objectarx 填充的分割

主要思路:找到填充边界集合:vecBo,然后把面积最大的边界找出来:bo1,用分割曲线和bo1通过boundary命令构成两个新的最大封闭边界,左边的记为 boLeft(红色部分),右边的记为boRight(绿色部分),在vecBo边界集合分开为:boLeft内部的边界,和boRight内部的边界。这样在分别填充的时候,就能有正确的填充边界集合。
下面放出代码:
通过选择填充求得填充边界集合:
static void GetHatchBo(AcDbHatch *pHatch,vector<AcDbEntity*>&vecBo)
{
Acad::ErrorStatus es; Adesk::Int32 LoopType; AcGeVoidPointerArray edgeptrAry;
AcGeIntArray edgeTypesAry; AcGePoint2dArray vertices;
AcGeDoubleArray bulges; //获得填充边界的数目
int LoopNum = pHatch->numLoops(); for (int i = ; i < LoopNum; i++)
{
//获取边界类型
LoopType = pHatch->loopTypeAt(i);
//如果边界是多义线
if (LoopType & AcDbHatch::kPolyline)
{
//取得边界定义数据(polyline)的顶点数组和凸度数组,它们是一一对应的
es = pHatch->getLoopAt(i, LoopType, vertices, bulges);
acutPrintf(L"\n多段线");
//是不是根据这些顶点数组和凸度数组构造一条AcDb多义线取决于你
AcDbPolyline *pl = new AcDbPolyline(); GetPolyline(vertices, bulges, pl); vecBo.push_back(pl);
}
else
{
//几乎可以取得除polyline外的所有边界定义数据
//第三个参数返回值是无值指针数组
//第四个参数返回值是组成边界的每一条边的类型
//它们也是一一对应的关系
es = pHatch->getLoopAt(i, LoopType, edgeptrAry, edgeTypesAry); //遍历,因为每一条边界又可能由多种AcGe曲线构成
for (int j = ; j < edgeTypesAry.length(); j++)
{ if (edgeTypesAry[j] == AcDbHatch::kLine)//直线
{
AcGeLineSeg2d *LnSeg = (AcGeLineSeg2d *)edgeptrAry[j];
acutPrintf(L"\n直线");
AcGePoint2d pt1 = LnSeg->startPoint();
AcGePoint2d pt2 = LnSeg->endPoint(); AcDbLine *line = new AcDbLine(AcGePoint3d(pt1.x,pt1.y,), AcGePoint3d(pt2.x, pt2.y, )); vecBo.push_back(line);
}
//圆弧
else if (edgeTypesAry[j] == AcDbHatch::kCirArc)
{
AcGeCircArc2d *cirArc = (AcGeCircArc2d *)edgeptrAry[j];
acutPrintf(L"\n圆弧");
//可以根据数学圆弧构造相应的AcDb圆弧,取决于你(以下同)
AcGePoint2d center = cirArc->center();
double ra = cirArc->radius();
double angle1 = cirArc->startAng();
double angle2 = cirArc->endAng();
AcDbCircle *cir = new AcDbCircle(AcGePoint3d(center.x, center.y, ), AcGeVector3d::kZAxis, ra); vecBo.push_back(cir); }
else if (edgeTypesAry[j] == AcDbHatch::kEllArc)//椭圆弧
{
AcGeEllipArc2d *ellArc = (AcGeEllipArc2d *)edgeptrAry[j];
acutPrintf(L"\n椭圆弧"); AcGePoint2d center = ellArc->center();
AcGeVector2d majorVec = ellArc->majorAxis();
double angle1 = ellArc->startAng();
double angle2 = ellArc->endAng();
double rad = ellArc->majorRadius();
double rad2 = ellArc->minorRadius(); AcDbEllipse *ell = new AcDbEllipse(AcGePoint3d(center.x, center.y, ),
AcGeVector3d::kZAxis, AcGeVector3d(majorVec.x,majorVec.y,), rad / rad2, angle1, angle2);
vecBo.push_back(ell);
}
else if (edgeTypesAry[j] == AcDbHatch::kSpline)//NURBS曲线
{
AcGeNurbCurve2d *spline = (AcGeNurbCurve2d *)edgeptrAry[j];
acutPrintf(L"\nNURBS曲线"); AcDbSpline * spl = NULL; createSpline(*spline, spl, ); vecBo.push_back(spl); }
}
} vertices.removeAll();
bulges.removeAll();
edgeptrAry.removeAll();
edgeTypesAry.removeAll();
}
}
获得填充边界集合
分割曲线构造新多段线:
if (pEnt2->isA() == AcDbPolyline::desc()) {
AcDbPolyline * plTemp = AcDbPolyline::cast(pEnt2);
AcGeDoubleArray dbArr;
AcGePoint2dArray pt2dArr;
int indexS = , indexE = ;
GetCollOfPl(plTemp, dbArr, pt2dArr);
//获得两个交点的索引用来构造新的多段线
GetIndexOfPl(plTemp, pt2dArr, ptArr, indexS, indexE);
AcDbPolyline *newPl = new AcDbPolyline();
newPl->addVertexAt(newPl->numVerts(), AcGePoint2d(ptArr[].x, ptArr[].y), , , );
for (int i=indexS;i<=indexE;i++)
{
newPl->addVertexAt(newPl->numVerts(), pt2dArr[i], dbArr[i], , );
}
newPl->addVertexAt(newPl->numVerts(), AcGePoint2d(ptArr[].x, ptArr[].y), , , );
newPl->setColorIndex();
PostToModelSpace(newPl);
newPl->close();
}
截取分隔曲线
构造左右边界:红色部分最大边界和绿色部分最大边界
static bool GetBoundary(const AcGePoint3d & seedPoint, AcDbVoidPtrArray& ptrArr)
{ ErrorStatus es = acedTraceBoundary(seedPoint, false, ptrArr); if (es != Acad::eOk) {
acutPrintf(L"\nboundary=%d", es);
return false;
}
return true;
}
判断vecBo边界集合的边界是否在左右边界内部:
主要是获得内部图形的点集,然后把左边边界内部的一点分别与这个点集中的点构成直线,如果直线和左边边界相交时有1个以上交点,就说明这个边界不在左边界内部。
static bool JudgeXj(CONST AcGePoint3dArray & ptArr, AcDbEntity *pEnt,const AcGePoint3d &innerPt) {
AcDbLine * l = new AcDbLine();
l->setStartPoint(innerPt);
AcGePoint3dArray ptTemp;
for (int i = ; i < ptArr.length(); i++)
{
l->setEndPoint(ptArr[i]);
l->intersectWith(pEnt, AcDb::kOnBothOperands, ptTemp);
if (ptTemp.length() >= ) {
delete l;
l = NULL;
return true;
}
}
return false;
}
判断边界是否在左边边界内部
完整代码见附件:
objectarx 填充的分割的更多相关文章
- objectarx 按比例分割封闭多段线
测试结果:这个是按0.1,0.1,0.1,0.3,0.4的比例划分的. 插件描述:这个插件主要是选择一个多段线poly,设置poly的close属性为true,在poly任意一侧画一条长线line(l ...
- Node.js:Buffer浅谈
Javascript在客户端对于unicode编码的数据操作支持非常友好,但是对二进制数据的处理就不尽人意.Node.js为了能够处理二进制数据或非unicode编码的数据,便设计了Buffer类,该 ...
- Matlab命令系列之目录操作
Matlab命令系列之目录操作 filesep 用于返回当前平台的目录分隔符,Windows是反斜杠(),Linux是斜杠(/).有时此命令结合ispc命令使用,可以灵活的设置目录分割符. fullf ...
- Matlab命令——目录操作(windows&Linux)
Matlab命令——目录操作(windows&Linux) 1. filesep用于返回当前平台的目录分隔符,Windows是反斜杠(\),Linux是斜杠(/).有时此命令结合ispc命令使 ...
- [Google Guava] 6-字符串处理:分割,连接,填充
原文链接 译文链接 译者:沈义扬,校对:丁一 连接器[Joiner] 用分隔符把字符串序列连接起来也可能会遇上不必要的麻烦.如果字符串序列中含有null,那连接操作会更难.Fluent风格的Joine ...
- sqlserver数据,将一行某一列字符串的值用“_”分割分别填充到这一行的其他列
分割字符到列DECLARE @a VARCHAR(10)SET @a ='00G-2-1102'SELECT CHARINDEX('-',@a,CHARINDEX('-',@a))SELECT CHA ...
- Matlab的标记分水岭分割算法
1 综述 Separating touching objects in an image is one of the more difficult image processing operation ...
- Shell文本处理 - 分割合并与过滤
sort分类操作 示例文件 Boys in Company C:HK:192:2192 Alien:HK:119:1982 The Hill:KL:63:2972 Aliens:HK:532:4892 ...
- java:快速文件分割及合并
文件分割与合并是一个常见需求,比如:上传大文件时,可以先分割成小块,传到服务器后,再进行合并.很多高大上的分布式文件系统(比如:google的GFS.taobao的TFS)里,也是按block为单位, ...
随机推荐
- FIT AP和FAT AP的区别
1.Fat模式是传统的WLAN组网方案,无线AP本身承担了认证终结.漫游切换.动态密钥产生等复杂功能,相对来说AP的功能较重,因此称为Fat AP. 2.Fit模式是新兴的一种WLAN组网模式,其相 ...
- 九成AI企业亏损,人工智能商业落地为何这么难?
自1956年"人工智能"一词诞生于"达特茅斯会议"后,前者就始终在不断向前推进.虽然中间经历了不少低谷和寒潮,但总算挺了过来.60多年后,人工智能在当下呈现突飞 ...
- 直击LG曲面OLED首发现场,高端品质更出众
简直是太棒了,我可以去看LG曲面OLED电视新品发布会了.这可是LG向中国首次推出的曲面OLED电视.在网上我就已经看到其实曲面OLED电视已经在韩国.美国还有欧洲都上市了,听说现在反响还挺不错.真没 ...
- BigDecimal进行精确运算
public class Test_1 { public static void main(String[] args) { System.out.println(0.06+0.01); System ...
- springboot yml 文件配置oracle,提示账号密码错误
最近使用Spring boot,本来一直连接的是mysql数据库,一直没问题.昨天在更换了oracle数据库后,一直提示账号密码不正确,登录被拒绝.检查多次,检查账号密码一切正常,但就是连接不上ora ...
- python-django-linux上mysql的安装和配置_20191124
又有了阻塞了,怎么在Linux创建数据库,mysql, 我把数据库安装在Linux上, 1,sudo apt-get install mysql-server 2,ps -aux | grep 'my ...
- mybatis generator 使用教程(生成带注释的实体类)
引言: 最近的一个项目,由于数据库表巨多,导致需要创建N多个java实体.dao.mapper.xml映射文件,如果均使用纯手工编写,无疑需要耗费大量时间和精力.于是上网学习了mybatis gene ...
- springmvc拦截器入门及其执行顺序源码分析
springmvc拦截器是偶尔会用到的一个功能,本案例来演示一个较简单的springmvc拦截器的使用,并通过源码来分析拦截器的执行顺序的控制.具体操作步骤为:1.maven项目引入spring依赖2 ...
- Proxmox如何进入单人维护模式(重置root密码)
官网连接:https://pve.proxmox.com/wiki/Root_Password_Reset Root Password Reset Contents [hide] 1Reset ...
- [洛谷P3366] [模板] 最小生成树
存个模板,顺便复习一下kruskal和prim. 题目传送门 kruskal 稀疏图上表现更优. 设点数为n,边数为m. 复杂度:O(mlogm). 先对所有边按照边权排序,初始化并查集的信息. 然后 ...