本教程在IMDB大型影评数据集 上训练一个循环神经网络进行情感分类。

from __future__ import absolute_import, division, print_function, unicode_literals
# !pip install tensorflow-gpu==2.0.0-alpha0
import tensorflow_datasets as tfds
import tensorflow as tf

导入matplotlib并创建一个辅助函数来绘制图形

import matplotlib.pyplot as plt
def plot_graphs(history, string):
plt.plot(history.history[string])
plt.plot(history.history['val_'+string])
plt.xlabel("Epochs")
plt.ylabel(string)
plt.legend([string, 'val_'+string])
plt.show()

1. 设置输入管道

IMDB大型电影影评数据集是一个二元分类数据集,所有评论都有正面或负面的情绪标签。

使用TFDS下载数据集,数据集附带一个内置的子字标记器

dataset, info = tfds.load('imdb_reviews/subwords8k', with_info=True,
as_supervised=True)
train_dataset, test_dataset = dataset['train'], dataset['test']

由于这是一个子字标记器,它可以传递任何字符串,并且标记器将对其进行标记。

tokenizer = info.features['text'].encoder
print ('Vocabulary size: {}'.format(tokenizer.vocab_size))
Vocabulary size: 8185
sample_string = 'TensorFlow is cool.'
tokenized_string = tokenizer.encode(sample_string)
print ('Tokenized string is {}'.format(tokenized_string))
original_string = tokenizer.decode(tokenized_string)
print ('The original string: {}'.format(original_string))
assert original_string == sample_string
Tokenized string is [6307, 2327, 4043, 4265, 9, 2724, 7975]
The original string: TensorFlow is cool.

如果字符串不在字典中,则标记生成器通过将字符串分解为子字符串来对字符串进行编码。

for ts in tokenized_string:
print ('{} ----> {}'.format(ts, tokenizer.decode([ts])))
6307 ----> Ten
2327 ----> sor
4043 ----> Fl
4265 ----> ow
9 ----> is
2724 ----> cool
7975 ----> .
BUFFER_SIZE = 10000
BATCH_SIZE = 64
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.padded_batch(BATCH_SIZE, train_dataset.output_shapes)
test_dataset = test_dataset.padded_batch(BATCH_SIZE, test_dataset.output_shapes)

2. 创建模型

构建一个tf.keras.Sequential模型并从嵌入层开始,嵌入层每个字存储一个向量,当被调用时,它将单词索引的序列转换为向量序列,这些向量是可训练的,在训练之后(在足够的数据上),具有相似含义的词通常具有相似的向量。

这种索引查找比通过tf.keras.layers.Dense层传递独热编码向量的等效操作更有效。

递归神经网络(RNN)通过迭代元素来处理序列输入,RNN将输出从一个时间步传递到其输入端,然后传递到下一个时间步。

tf.keras.layers.Bidirectional包装器也可以与RNN层一起使用。这通过RNN层向前和向后传播输入,然后连接输出。这有助于RNN学习远程依赖性。

model = tf.keras.Sequential([
tf.keras.layers.Embedding(tokenizer.vocab_size, 64),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
# 编译Keras模型以配置训练过程:
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])

3. 训练模型

history = model.fit(train_dataset, epochs=10,
validation_data=test_dataset)
...
Epoch 10/10
391/391 [==============================] - 70s 180ms/step - loss: 0.3074 - accuracy: 0.8692 - val_loss: 0.5533 - val_accuracy: 0.7873
test_loss, test_acc = model.evaluate(test_dataset)
print('Test Loss: {}'.format(test_loss))
print('Test Accuracy: {}'.format(test_acc))
391/Unknown - 19s 47ms/step - loss: 0.5533 - accuracy: 0.7873Test Loss: 0.553319326714
Test Accuracy: 0.787320017815

上面的模型没有屏蔽应用于序列的填充。如果我们对填充序列进行训练,并对未填充序列进行测试,就会导致偏斜。理想情况下,模型应该学会忽略填充,但是正如您在下面看到的,它对输出的影响确实很小。

如果预测 >=0.5,则为正,否则为负。

def pad_to_size(vec, size):
zeros = [0] * (size - len(vec))
vec.extend(zeros)
return vec
def sample_predict(sentence, pad):
tokenized_sample_pred_text = tokenizer.encode(sample_pred_text)
if pad:
tokenized_sample_pred_text = pad_to_size(tokenized_sample_pred_text, 64)
predictions = model.predict(tf.expand_dims(tokenized_sample_pred_text, 0))
return (predictions)
# 对不带填充的示例文本进行预测
sample_pred_text = ('The movie was cool. The animation and the graphics '
'were out of this world. I would recommend this movie.')
predictions = sample_predict(sample_pred_text, pad=False)
print (predictions)
[[ 0.68914342]]
# 对带填充的示例文本进行预测
sample_pred_text = ('The movie was cool. The animation and the graphics '
'were out of this world. I would recommend this movie.')
predictions = sample_predict(sample_pred_text, pad=True)
print (predictions)
[[ 0.68634349]]
plot_graphs(history, 'accuracy')

plot_graphs(history, 'loss')

4. 堆叠两个或更多LSTM层

Keras递归层有两种可以用的模式,由return_sequences构造函数参数控制:

  • 返回每个时间步的连续输出的完整序列(3D张量形状 (batch_size, timesteps, output_features))。
  • 仅返回每个输入序列的最后一个输出(2D张量形状 (batch_size, output_features))。
model = tf.keras.Sequential([
tf.keras.layers.Embedding(tokenizer.vocab_size, 64),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(
64, return_sequences=True)),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
history = model.fit(train_dataset, epochs=10,
validation_data=test_dataset)
...
Epoch 10/10
391/391 [==============================] - 154s 394ms/step - loss: 0.1120 - accuracy: 0.9643 - val_loss: 0.5646 - val_accuracy: 0.8070
test_loss, test_acc = model.evaluate(test_dataset)
print('Test Loss: {}'.format(test_loss))
print('Test Accuracy: {}'.format(test_acc))
391/Unknown - 45s 115ms/step - loss: 0.5646 - accuracy: 0.8070Test Loss: 0.564571284348
Test Accuracy: 0.80703997612
# 在没有填充的情况下预测示例文本
sample_pred_text = ('The movie was not good. The animation and the graphics '
'were terrible. I would not recommend this movie.')
predictions = sample_predict(sample_pred_text, pad=False)
print (predictions)
[[ 0.00393916]]
# 在有填充的情况下预测示例文本
sample_pred_text = ('The movie was not good. The animation and the graphics '
'were terrible. I would not recommend this movie.')
predictions = sample_predict(sample_pred_text, pad=True)
print (predictions)
[[ 0.01098633]]
plot_graphs(history, 'accuracy')

plot_graphs(history, 'loss')

你可以查看其它现有的递归层,例如GRU层。

使用RNN对文本进行分类实践电影评论的更多相关文章

  1. tensorflow 教程 文本分类 IMDB电影评论

    昨天配置了tensorflow的gpu版本,今天开始简单的使用一下 主要是看了一下tensorflow的tutorial 里面的 IMDB 电影评论二分类这个教程 教程里面主要包括了一下几个内容:下载 ...

  2. kaggle之电影评论文本情感分类

    电影文本情感分类 Github地址 Kaggle地址 这个任务主要是对电影评论文本进行情感分类,主要分为正面评论和负面评论,所以是一个二分类问题,二分类模型我们可以选取一些常见的模型比如贝叶斯.逻辑回 ...

  3. 【项目实战】Kaggle电影评论情感分析

    前言 这几天持续摆烂了几天,原因是我自己对于Kaggle电影评论情感分析的这个赛题敲出来的代码无论如何没办法运行,其中数据变换的维度我无法把握好,所以总是在函数中传错数据.今天痛定思痛,重新写了一遍代 ...

  4. 『TensotFlow』RNN中文文本_下_暨研究生开学感想

    承前 接上节代码『TensotFlow』RNN中文文本_上, import numpy as np import tensorflow as tf from collections import Co ...

  5. 『TensotFlow』RNN中文文本_上

    中文文字预处理流程 文本处理 读取+去除特殊符号 按照字段长度排序 辅助数据结构生成 生成 {字符:出现次数} 字典 生成按出现次数排序好的字符list 生成 {字符:序号} 字典 生成序号list ...

  6. 基于Keras的imdb数据集电影评论情感二分类

    IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行.)中找到下载,下载后放到~/.keras/datasets/目录下,即可正 ...

  7. 爬虫系列(十一) 用requests和xpath爬取豆瓣电影评论

    这篇文章,我们继续利用 requests 和 xpath 爬取豆瓣电影的短评,下面还是先贴上效果图: 1.网页分析 (1)翻页 我们还是使用 Chrome 浏览器打开豆瓣电影中某一部电影的评论进行分析 ...

  8. 机器学习朴素贝叶斯 SVC对新闻文本进行分类

    朴素贝叶斯分类器模型(Naive Bayles) Model basic introduction: 朴素贝叶斯分类器是通过数学家贝叶斯的贝叶斯理论构造的,下面先简单介绍贝叶斯的几个公式: 先验概率: ...

  9. kaggle——Bag of Words Meets Bags of Popcorn(IMDB电影评论情感分类实践)

    kaggle链接:https://www.kaggle.com/c/word2vec-nlp-tutorial/overview 简介:给出 50,000 IMDB movie reviews,进行0 ...

随机推荐

  1. 深度学习、物联网专家Sunil Kumar Vuppala博士独家专访

    介绍 有多种方法可以学习数据科学,机器学习和深度学习概念.您可以观看视频,阅读文章,参加课程,参加会议等.但是有一件事是无法替代的----经验. 我个人从与数据科学专家和行业领袖的交流中学到了很多.他 ...

  2. Spark使用jdbc时的并行度

    Spark SQL支持数据源使用JDBC从其他数据库读取数据. 与使用JdbcRDD相比,应优先使用此功能. 这是因为结果以DataFrame的形式返回,并且可以轻松地在Spark SQL中进行处理或 ...

  3. Python IDE ——Anaconda+PyCharm的安装与配置

    一 前言 最近莫名其妙地想学习一下Python,想着利用业余时间学习一下机器学习(或许仅仅是脑子一热吧).借着研究生期间对于PyCharm安装的印象,在自己的电脑上重新又安装了一遍.利用周末的一点时间 ...

  4. spring-cloud-gateway动态路由

    概述 线上项目发布一般有以下几种方案: 停机发布 蓝绿部署 滚动部署 灰度发布 停机发布 这种发布一般在夜里或者进行大版本升级的时候发布,因为需要停机,所以现在大家都在研究 Devops 方案. 蓝绿 ...

  5. iOS isa 和 Class

    一.Runtime 简介 Runtime 又叫运行时,是一套底层的 C 语言 API,是 iOS 系统的核心之一.开发者在编码过程中,可以给任意一个对象发送消息,在编译阶段只是确定了要向接收者发送这条 ...

  6. .Net平台技术栈?不止于此

    首先援引一名工友几年前的文章:http://csharper.blog.51cto.com/3052247/1330022,结合当前微软技术领域及平台工具现状,文章有增改. .NET是个很大.很宽.很 ...

  7. Aho-Corasick automaton

    目录 KMP 算法 BF 算法 KMP 算法 避免重复遍历 算法思想 代码实现 匹配函数 求 next 数组 字典树 多模匹配 构造字典树 字典树的结构体定义 构造算法 伪代码 代码实现 失配指针 功 ...

  8. Luogu1039 侦探推理

    题目描述 明明同学最近迷上了侦探漫画<柯南>并沉醉于推理游戏之中,于是他召集了一群同学玩推理游戏.游戏的内容是这样的,明明的同学们先商量好由其中的一个人充当罪犯(在明明不知情的情况下),明 ...

  9. 监控一哥Prometheus你可认识?

    先大致认识认识普罗米修斯 —— Prometheus. 依据官方文档https://prometheus.io/docs/introduction/overview/ 大概能够了解到 Promethe ...

  10. block 的内存结构衍生出来的面试题

    今天在群里看到大佬们在讨论一个面试题,问如下代码在 32bit 和 64bit 系统上分别报什么错误: #import <Foundation/Foundation.h> int main ...