# -*- coding: utf-8 -*-
"""
Created on Thu Jun 28 17:16:19 2018 @author: zhen
"""
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt
x, y = mglearn.datasets.make_forge()
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0) # 生成训练和测试集数据 from sklearn.neighbors import KNeighborsClassifier
14 clf = KNeighborsClassifier(n_neighbors=3) # 调用K近邻分类算法
15
16 clf.fit(x_train, y_train) # 训练数据 print("Test set predictions:{}".format(clf.predict(x_test))) # 预测 print("Test set accuracy:{:.2f}".format(clf.score(x_test, y_test))) fig, axes = plt.subplots(1, 3, figsize=(10, 3)) # 使用matplotlib画图 for n_neighbors, ax in zip([1, 3, 9], axes):
# fit 方法返回对象本身,所以我们可以将实例化和拟合放在一行代码中
clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(x, y)
mglearn.plots.plot_2d_separator(clf, x, fill=True, eps=0.5, ax=ax, alpha=0.4)
mglearn.discrete_scatter(x[:, 0], x[:, 1], y, ax=ax)
ax.set_title("{} neighbor(s)".format(n_neighbors))
ax.set_xlabel("feature 0")
ax.set_ylabel("feature 1")
axes[0].legend(loc=3)
结果:
总结:从图中可以看出,使用单一邻居绘制的决策边界紧跟着训练数据,随着邻居的增多,决策边界也越来越平滑,更平滑的边界对应更简单的模型,换句话说,使用更少的邻居对应更高的模型复杂度。

K邻近分类算法的更多相关文章

  1. 数学建模:2.监督学习--分类分析- KNN最邻近分类算法

    1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分 ...

  2. 监督学习-KNN最邻近分类算法

    分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术建立分类模型,从而对没有分类的数据进行分类的分析方法. 分类问题的应用场景:用于将事物打上一 ...

  3. KNN邻近分类算法

    K邻近(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法了.它采用测量不同特征值之间的距离方法进行分类.它的思想很简单:计算一个点A与其他所有点之间的距离,取出与该点最近的 ...

  4. K近邻分类算法实现 in Python

    K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(c ...

  5. 查看neighbors大小对K近邻分类算法预测准确度和泛化能力的影响

    代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen &qu ...

  6. K邻近回归算法

    代码: # -*- coding: utf-8 -*- """ Created on Fri Jul 13 10:40:22 2018 @author: zhen &qu ...

  7. sklearn_k邻近分类

    # K邻近分类#--------------------------------# coding:utf-8 import pandas as pd from sklearn.neighbors im ...

  8. 《机器学习实战》学习笔记一K邻近算法

     一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...

  9. 监督学习——K邻近算法及数字识别实践

    1. KNN 算法 K-近邻(k-Nearest Neighbor,KNN)是分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似( ...

随机推荐

  1. vue 自学笔记(三) 计算属性与侦听器

    一:计算属性 虽然在模板内使用表达式对属性进行处理十分便利,例如在小胡子语法里写number + 1实现对数据的简单处理,但若我们在其中加入大量的代码,使得逻辑变重,导致难以维护.例如下面的代码,并不 ...

  2. 用eclipse导入打war包的maven项目

    最近遇到Maven管理下的Spring MVC项目,组内某位将项目代码扔过来,一脸懵逼(囧),查阅了一些资料后终于将此项目运行通了(>_<),特此记录下来与各位分享. 通俗的来说,Mave ...

  3. 21天打造分布式爬虫-requests库(二)

    2.1.get请求 简单使用 import requests response = requests.get("https://www.baidu.com/") #text返回的是 ...

  4. PCA降维实验代码

    实验需要提取数据的空间信息,所以要对光谱进行降维,使用主成分分析算法,样例代码备份如下 # -*- coding: utf-8 -*- """ Created on Mo ...

  5. 第三章 服务治理:Spring Cloud Eureka

    Spring Cloud Eureka是Spring Cloud Netflix 微服务套件中的一部分,它基于Netflix Eureka做了二次封装,主要负责完成微服务架构中的服务治理功能.Spri ...

  6. Unity3d中PureMVC框架的搭建及使用资料

    1.下载PureMVC框架 https://github.com/PureMVC/puremvc-csharp-multicore-framework https://github.com/PureM ...

  7. 【Elasticsearch全文搜索引擎实战】之Head插件实践

    简介 Elasticsearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Ap ...

  8. ServerSocket和Socket

    前言 用ServerSocket和Socket做了个Server.Client通信的demo,以及学习下在这个demo过程中用到java.net.java.io包下几个常用的类. Server imp ...

  9. Apollo 1 融合 Spring 的三个入口

    前言 Spring 作为 Java 世界非官方标准框架,任何一个中间件想要得到良好的发展,必须完美支持 Spring 的各种特性,即:无缝融入 Spring. Apollo 作为分布式配置中心,服务于 ...

  10. centos6.5修改yum安装的mysql默认目录

    0.说明 Linux下更改yum默认安装的mysql路径datadir. linux下,MySQL默认的数据文档存储目录为/var/lib/mysql. 假如要把MySQL目录移到/home/data ...