【CF961G】Partitions(第二类斯特林数)
【CF961G】Partitions(第二类斯特林数)
题面
题解
考虑每个数的贡献,显然每个数前面贡献的系数都是一样的。
枚举当前数所在的集合大小,所以前面的系数\(p\)就是:
p&=\sum_{i=1}^n{n-1\choose i-1}i\begin{Bmatrix}n-i\\k-1\end{Bmatrix}\\
&=\sum_{i=1}^n{n-1\choose i-1}i\frac{1}{(k-1)!}\sum_{j=0}^{k-1}(-1)^j{k-1\choose j} (k-1-j)^{n-i}\\
&=\sum_{i=1}^n{n-1\choose i-1}i\sum_{j=0}^{k-1}\frac{(-1)^j (k-1-j)^{n-i}}{j!(k-1-j)!}\\
&=\sum_{j=0}^{k-1}\frac{(-1)^j }{j!(k-1-j)!}\sum_{i=1}^n{n-1\choose i-1}i(k-1-j)^{n-i}\\
\end{aligned}\]
把后面一半拿出来单独算,令\(t=k-1-j\)
&\ \ \ \sum_{i=1}^n{n-1\choose i-1}it^{n-i}\\
&=\sum_{i=1}^n \frac{(n-1)!}{(i-1)!(n-i)!}it^{n-i}\\
&=\sum_{i=1}^n \frac{(n-1)!}{(i-1)!(n-i)!}(i-1+1)t^{n-i}\\
&=\sum_{i=1}^n \frac{(n-2)!}{(i-2)!(n-i)!}(n-1)t^{n-i}+\sum_{i=1}^n \frac{(n-1)!}{(i-1)!(n-i)!}t^{n-i}\\
&=(n-1)\sum_{i=1}^n {n-2\choose i-2}t^{n-i}+\sum_{i=1}^n{n-1\choose i-1}t^{n-i}\\
&=(n-1)\sum_{i=1}^n {n-2\choose n-i}t^{n-i}+\sum_{i=1}^n{n-1\choose n-i}t^{n-i}\\
&=(n-1)(t+1)^{n-2}+(t+1)^{n-1}
\end{aligned}\]
所以再带回到原式中:
p&=\sum_{j=0}^{k-1}\frac{(-1)^j }{j!(k-1-j)!}\sum_{i=1}^n{n-1\choose i-1}i(k-1-j)^{n-i}\\
&=\sum_{j=0}^{k-1}\frac{(-1)^j }{j!(k-1-j)!}((n-1)(k-j)^{n-2}+(k-j)^{n-1})\\
&=\sum_{j=0}^{k-1}\frac{(-1)^j }{j!(k-1-j)!}(n+k-j-1)(k-j)^{n-2}
\end{aligned}
\]
快速幂就完事了。
然而我在洛谷的题解里面还看到了另外一种考虑的方法:
考虑贡献中的\(|S|\sum w_i\),可以认为是划分出来的集合中,每一个点都对于当前这个点贡献一次\(w_i\)。那么考虑当前点被其它点做的贡献次数。
考虑一个点对\((i,j)\),如果\(i\neq j\),那么方案数就是两者在同一个集合中的方案数,考虑将两个点合并在一起,那么就是\(\begin{Bmatrix}n-1\\k\end{Bmatrix}\),如果\(i=j\),那么无论如何都有贡献,也就是\(\begin{Bmatrix}n\\k\end{Bmatrix}\)。所以,可以得到:
\]
第二类斯特林数直接用容斥展开式计算即可,复杂度不变。
代码是第一种方法的。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 200200
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int fpow(int a,int b)
{
int s=1;if(b<0)return 1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int n,K,ans,p;
int jc[MAX],jv[MAX],inv[MAX];
int main()
{
scanf("%d%d",&n,&K);
for(int i=1,x;i<=n;++i)scanf("%d",&x),add(ans,x);
inv[0]=inv[1]=jc[0]=jv[0]=1;
for(int i=1;i<=K;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=K;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=K;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=0,d=1;i<K;++i,d=MOD-d)
add(p,1ll*d*jv[i]%MOD*jv[K-1-i]%MOD*(n+K-i-1)%MOD*fpow(K-i,n-2)%MOD);
ans=1ll*ans*p%MOD;
printf("%d\n",ans);
return 0;
}
【CF961G】Partitions(第二类斯特林数)的更多相关文章
- CF961G Partitions(第二类斯特林数)
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- CF961G Partitions(第二类斯特林数)
传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- CF932E Team Work(第二类斯特林数)
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- 【CF932E】Team Work(第二类斯特林数)
[CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...
随机推荐
- Java 面试题 == 和 equals 的区别
int和Integer的区别 1.Integer是int的包装类,int则是java的一种基本数据类型 2.Integer变量必须实例化后才能使用,而int变量不需要 3.Integer实际是对象的引 ...
- 51Nod 1677 treecnt
一道比较基础的计数题,还是一个常用的单独计算贡献的例子. 首先看题目和范围,暴力枚举肯定是不可行的,而且\(O(n\ logn)\)的算法貌似很难写. 那我们就来想\(O(n)\)的吧,我们单独考虑每 ...
- ubuntu12.04安装mininet
网上安装mininet教程有很多,都是通过git命令安装,但有一个坑,安装到./install.sh时会报错,记录下来 1.通过git 下载mininet git clone git://github ...
- HBase最佳实践-管好你的操作系统
本文由 网易云发布. 作者:范欣欣 本篇文章仅限本站分享,如需转载,请联系网易获取授权. 操作系统这个话题其实很早就想拿出来和大家分享,拖到现在一方面是因为对其中各种理论理解并不十分透彻,怕讲不好: ...
- [UWP 自定义控件]了解模板化控件(1):基础知识
1.概述 UWP允许开发者通过两种方式创建自定义的控件:UserControl和TemplatedControl(模板化控件).这个主题主要讲述如何创建和理解模板化控件,目标是能理解模板化控件常见的知 ...
- 该如何以正确的姿势插入SVG Sprites?
大家好,我是苏南,今天要给大家分享的是SVG sprite(也叫雪碧图),所谓雪碧图,当然就不是我们常喝的雪碧饮料(Sprites)哦,哈哈- 当下流程的移动端,手机型号太多太多,今天工作项目中突然发 ...
- 分布式监控系统Zabbix--完整安装记录 -添加web页面监控
通过zabbix做web监控,不仅仅可以监控到站点的响应时间,还可以根据站点返回的状态码或响应时间做报警设置,比如说对某个url进行监控,当访问返回的状态码是非200状态时都报警(创建触发器即可).下 ...
- linux-文件流4种读取方式
第二种方式 第三种 第四种: 小括号在管道符的右边开辟了两个子进程 大括号在管道符的右边开辟了一个子进程, export 用来导出子进程的 num 还可以借助外部文件进行 七步扩展:
- ZJOI2008 生日聚会Party
对于任意连续区间的限制,可以转化为以i结尾的所有区间的限制.这个转换在昨天的后缀自动机题也有用到,因此将其命名为区后变换.稍加分析后,我们记录以i结尾任意区间最大差即可进行DP转移.这个转换同时也创造 ...
- Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)-D- Array Restoration
我们知道不满足的肯定是两边大中间小的,这样就用RMQ查询两个相同等值的区间内部最小值即可,注意边界条件 #include<bits/stdc++.h> #define x first #d ...