BZOJ1041 HAOI2008圆上的整点(数论)
求x2+y2=r2的整数解个数,显然要化化式子。考虑求正整数解。
y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r-x,r+x)→(r-x)/d·(r+x)/d为完全平方数,gcd((r-x)/d,(r+x)/d)=1→(r-x)/d和(r+x)/d均为完全平方数→(r-x)/d+(r+x)/d=2r/d为整数,即d|2r
于是我们可以以√n的复杂度枚举d,然后枚举√(r-x)/d,检验一下是否满足之前推导中的条件即可,再加上坐标轴上和其余象限的答案。
这样的复杂度并不显然,不过感觉上明显低于线性,并且一个数的因数个数是有比较优秀的上界的:n1.066/ln(ln n)。http://vfleaking.blog.163.com/blog/static/174807634201341913040467/
还有O(分解质因数)的神仙做法,似乎将素数拓展到了复平面,并不可能懂。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define ll long long
int n,ans=;
ll m;
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
void solve(ll x)
{
if (x>=n) return;
for (int i=;i*i*x<=n;i++)
{
int a=i*i;
if (gcd(a,m/x-a)==&&((ll)sqrt(m/x-a))*((ll)sqrt(m/x-a))==m/x-a) ans++;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1041.in","r",stdin);
freopen("bzoj1041.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();m=1ll*n<<;
for (ll i=;i*i<=m;i++)
if (m%i==)
{
solve(i);
if (i*i<m) solve(m/i);
}
cout<<(ans+<<);
return ;
}
BZOJ1041 HAOI2008圆上的整点(数论)的更多相关文章
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4631 Solved: 2087 [Submit][S ...
- 【bzoj1041】[HAOI2008]圆上的整点 数论
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...
- [BZOJ1041] [HAOI2008] 圆上的整点 (数学)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- [bzoj1041][HAOI2008]圆上的整点
我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- 【BZOJ1041】圆上的整点(数论)
[BZOJ1041]圆上的整点(数论) 题面 BZOJ 洛谷 题解 好神仙的题目啊. 安利一个视频,大概是第\(7\)到\(19\)分钟的样子 因为要质因数分解,所以复习了一下\(Pollard\_r ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
随机推荐
- SecureRandom
我们知道,Random类中实现的随机算法是伪随机,也就是有规则的随机.在进行随机时,随机算法的起源数字称为种子数(seed),在种子数的基础上进行一定的变换,从而产生需要的随机数字. 相同种子数的Ra ...
- Shiro的认证授权
shiro安全框架入门整理 package com.shiro.test; import org.apache.shiro.SecurityUtils; import org.apache.shiro ...
- url 传递中文参数乱码问题的终极解决方法。
估计很多人在做web开发的时候,都会碰到过url传递中文参数,有时候会出现乱码的问题,但有些项目或者环境,又不会有问题.当遇到乱码的时候,上网找了很多解决方案,比如: 页面设置它的编码方式,改成utf ...
- wpf 状态栏图标背景闪烁提醒 FlashWindowEx
原文:wpf 状态栏图标背景闪烁提醒 FlashWindowEx using System; using System.Runtime.InteropServices; using System.Wi ...
- 转 Velocity中加载vm文件的三种方式
Velocity中加载vm文件的三种方式 velocitypropertiespath Velocity中加载vm文件的三种方式: 方式一:加载classpath目录下的vm文件 Prope ...
- Opencv 2.4.10 +VS2010 项目配置
资料来源:http://blog.csdn.net/scottly1/article/details/40978625
- mybatis 缓存的使用, 看这篇就够了
目录 1 一级缓存 1.1 同一个 SqlSession 1.2 不同的 SqlSession 1.3 刷新缓存 1.4 总结 2 二级缓存 2.1 配置二级缓存 2.2 使用二级缓存 2.3 配置详 ...
- CSharp 案例:用 Dynamic 来解决 DataTable 数值累加问题
需求说明 给定一个 DataTable,如果从中取出数值类型列的值并对其累加? 限制:不知该列是何种数值类型. 解决方案 1.将表转换为 IEnumerable<dynamic>,而后获取 ...
- 过渡与动画 - 逐帧动画&steps调速函数
写在前面 上一篇中我们熟悉五种内置的缓动曲线和(三次)贝塞尔曲线,并且基于此完成了缓动效果. 但是如果我们想要实现逐帧动画,基于贝塞尔曲线的调速函数就显得有些无能为力了,因为我们并不需要帧与帧之间的过 ...
- 【nodejs】让nodejs像后端mvc框架(asp.net mvc )一样处理请求--控制器的声明定义和发现篇(3/8)
文章目录 前情概要 前面文章把路由已经介绍的差不多了,包括url映射,路由选择等.接下来讲一讲controller的一些基本规则 BaseController的所有代码都在这里拉.相当简单. 主要逻辑 ...