Balls(扔鸡蛋问题)
4554 Balls
The classic Two Glass Balls brain-teaser is often posed as:
“Given two identical glass spheres, you would like to determine the lowest floor in a 100-story
building from which they will break when dropped. Assume the spheres are undamaged
when dropped below this point. What is the strategy that will minimize the worst-case
scenario for number of drops?”
Suppose that we had only one ball. We’d have to drop from each floor from 1 to 100 in sequence,
requiring 100 drops in the worst case.
Now consider the case where we have two balls. Suppose we drop the first ball from floor n. If it
breaks we’re in the case where we have one ball remaining and we need to drop from floors 1 to n − 1
in sequence, yielding n drops in the worst case (the first ball is dropped once, the second at most n − 1
times). However, if it does not break when dropped from floor n, we have reduced the problem to
dropping from floors n + 1 to 100. In either case we must keep in mind that we’ve already used one
drop. So the minimum number of drops, in the worst case, is the minimum over all n.
You will write a program to determine the minimum number of drops required, in the worst case,
given B balls and an M -story building.
Input
The first line of input contains a single integer P , (1 ≤ P ≤ 1000), which is the number of data sets that
follow. Each data set consists of a single line containing three (3) decimal integer values: the problem
number, followed by a space, followed by the number of balls B, (1 ≤ B ≤ 50), followed by a space and
the number of floors in the building M , (1 ≤ M ≤ 1000).
Output
For each data set, generate one line of output with the following values: The data set number as a
decimal integer, a space, and the minimum number of drops needed for the corresponding values of B
and M .
Sample Input
4
1
2
3
4
2 10
2 100
2 300
25 900
Sample Output
1 4
2 14
3 24
4 10
这题就是很出名的扔鸡蛋问题,不过这道题改成了玻璃球。
想要找到,在最坏的情况下,我们所需要的检测次数最少来找到鸡蛋在哪一楼层之下,鸡蛋不会被摔碎,输出最少的次数。
一共有m个鸡蛋,n层楼,dp[m][n]表示有m个鸡蛋,需要检测的层数有n层。
首先我们要确立最坏的情况,
假设我们在1 to n层中任选一层扔下鸡蛋,假设在第i层扔下,1:如果鸡蛋在第i层碎掉了,还剩m-1个鸡蛋,现在只需要 在1 to
i-1层中检测,剩下i-1个楼层需要检测,dp[m][i] = dp[m-1][i-1] +
1,1表示第i层的检测。2:如果鸡蛋在第i层没有碎,还剩m个鸡蛋,现在只需要在i+1 to
n层中检测,剩下n-i个楼层需要检测,dp[m][i] = dp[m][n-1] +
1,1表示第i层的检测。最坏的情况就是,两种情况之下,所需要检测的次数最多的那一种情况。
然后找到在(1,n)层中,从哪层扔下所需次数最少的情况。

1 #include<cstdio>
2 #include<algorithm>
3 using namespace std;
4 int dp[1001][1001];
5 int judge_(int a,int b){
6 for(int i = 0; i <=b; ++i) {
7 dp[0][i] = 0;//如果没有鸡蛋,需要的次数都为0
8 dp[1][i] = i;//如果鸡蛋只有一个,那么需要的次数就是楼层数
9 }
10 for(int i = 2; i <= a; ++i) {
11 dp[i][0] = 0;//如果没有楼层,所需要的次数是0
12 dp[i][1] = 1;//如果只有1个楼层,所需要的次数是1
13 }
14 for(int i = 2; i <= a; ++i) {//鸡蛋从2 to a 遍历
15 for(int j = 2; j <= b;j++) {//楼层从2, to b遍历,dp[i][j]表示,在有i个鸡蛋,j个楼层需要检测的情况下所需要的最小检测次数
16 int t = 0x3f3f3f;
17 for(int k = 1; k <= j; ++k) {//找到1 to j从哪一个楼层扔下所需要的次数最少
18 t = min(t,1 + max(dp[i-1][k-1],dp[i][j-k]));// max(dp[i-1][k-1],dp[i][j-k]) 找到碎和不碎的情况下,所需要的最大的次数,即最坏的情况
19 }
20 dp[i][j] = t;//将最小的次数赋值给在有i个鸡蛋,j个楼层需要检测的情况下的最小次数
21 }
22 }
23 return dp[a][b];//输出在有a个鸡蛋,b个楼层需要检测的情况下的需要的最小次数
24 }
25 int main()
26 {
27 int p;
28 scanf("%d",&p);
29 while (p--) {
30 int n,a,b;
31 scanf("%d %d %d",&n,&a,&b);
32 printf("%d %d\n",n,judge_(a,b));
33 }
34 return 0;
35 }

贴一个写的比较好的博客吧
https://blog.csdn.net/joylnwang/article/details/6769160
Balls(扔鸡蛋问题)的更多相关文章
- POJ 3783 Balls --扔鸡蛋问题 经典DP
题目链接 这个问题是谷歌面试题的加强版,面试题问的是100层楼2个鸡蛋最坏扔多少次:传送门. 下面我们来研究下这个题,B个鸡蛋M层楼扔多少次. 题意:给定B (B <= 50) 个一样的球,从 ...
- [CareerCup] 6.5 Drop Eggs 扔鸡蛋问题
6.5 There is a building of 100 floors. If an egg drops from the Nth floor or above, it will break. I ...
- 扔鸡蛋问题具体解释(Egg Dropping Puzzle)
经典的动态规划问题,题设是这种: 假设你有2颗鸡蛋,和一栋36层高的楼,如今你想知道在哪一层楼之下,鸡蛋不会被摔碎,应该怎样用最少的測试次数对于不论什么答案楼层都可以使问题得到解决. 假设你从某一层楼 ...
- 扔鸡蛋问题详解(Egg Dropping Puzzle)
http://blog.csdn.net/joylnwang/article/details/6769160 经典的动态规划问题,题设是这样的:如果你有2颗鸡蛋,和一栋36层高的楼,现在你想知道在哪一 ...
- Coursera Algorithms week1 算法分析 练习测验: Egg drop 扔鸡蛋问题
题目原文: Suppose that you have an n-story building (with floors 1 through n) and plenty of eggs. An egg ...
- Leetcode 887 Super Egg Drop(扔鸡蛋) DP
这是经典的扔鸡蛋的题目. 同事说以前在uva上见过,不过是扔气球.题意如下: 题意: 你有K个鸡蛋,在一栋N层高的建筑上,被要求测试鸡蛋最少在哪一层正好被摔坏. 你只能用没摔坏的鸡蛋测试.如果一个鸡蛋 ...
- Google面试题-高楼扔鸡蛋问题
本文由 @lonelyrains 出品.转载请注明出处. 文章链接: http://blog.csdn.net/lonelyrains/article/details/46428569 高楼扔鸡蛋问 ...
- zstu 4214 高楼扔鸡蛋(google 面试题)dp
input T 1<=T<=10000 n m 1<=n<=2000000007 1<=m<=32 output m个鸡蛋从1到n哪一楼x扔下去刚好没碎,而再x+1 ...
- 高楼扔鸡蛋问题(鹰蛋问题) POJ-3783
这是一道经典的DP模板题. https://vjudge.net/problem/POJ-3783#author=Herlo 一开始也是不知道咋写,尝试找了很多博客,感觉有点领悟之后写下自己的理解. ...
随机推荐
- Linux 分支那么多,这里可以帮你缩小选择范围
Linux 分支那么多,这里可以帮你缩小选择范围 https://wiki.installgentoo.com/wiki/Babbies_First_Linux https://wiki.instal ...
- PTA寒假二
7-1 币值转换 (20 分) 输入一个整数(位数不超过9位)代表一个人民币值(单位为元),请转换成财务要求的大写中文格式.如23108元,转换后变成"贰万叁仟壹百零捌"元.为了简 ...
- 再见了我热爱的ACM赛场
随着2017EC-Final结束,我的ACM生涯也真正结束了,区域赛三铜三银三金,没有打铁,对我来说算是很满足了. 为什么打了ACM?我记得进入大学之后大概认真上课两三周,我就开始对大学讲课失望,开始 ...
- requestmapping等相关知识
@responseBody注解的使用 1. @responseBody注解的作用是将controller的方法返回的对象通过适当的转换器转换为指定的格式之后,写入到response对象的body区 ...
- Spring/Spring MVC
90.为什么要使用 spring? 答:spring是一个开源框架,是个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架 方便结构简化开发 AOP编码的支持 声明式事物的支持 方便程序的测试 ...
- Python shutil 模块
高级的文件.文件夹.压缩包 处理模块 http://www.cnblogs.com/wupeiqi/articles/4963027.html
- Vue-项目之免费课和购物车实现
调整首页细节 固定头部 App.vue中代码 <style> body{ padding: 0; margin:0; margin-top: 80px; } </style> ...
- Guava 3: 集合Collections
一.引子 Guava 对JDK集合的拓展,是最成熟且最受欢迎的部分.本文属于Guava的核心,需要仔细看. 二.Guava 集合 2.1 Immutable Collections不可变集合 1.作用 ...
- freemarker语法介绍及其入门教程实例
# freemarker语法介绍及其入门教程实例 # ## FreeMarker标签使用 #####一.FreeMarker模板文件主要有4个部分组成</br>#### 1.文本,直接输 ...
- ant design + react,自动获取上传音频的时长(react-audio-player)
在后台管理项目中,用户要求上传音频,并且自动获取音频时长. 第一步, import { Upload, Button, Icon } from 'antd'; 第二步,在表单中使用 Upload 组件 ...