一、概述

1、Socket:之前的wordcount例子,已经演示过了,StreamingContext.socketTextStream()

2、HDFS文件
基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实时处理。相当于处理实时的文件流。 streamingContext.fileStream<KeyClass, ValueClass, InputFormatClass>(dataDirectory)
streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory) Spark Streaming会监视指定的HDFS目录,并且处理出现在目录中的文件。要注意的是,所有放入HDFS目录中的文件,都必须有相同的格式;
必须使用移动或者重命名的方式,将文件移入目录;一旦处理之后,文件的内容即使改变,也不会再处理了;基于HDFS文件的数据源是没有
Receiver的,因此不会占用一个cpu core。

二、代码实现

1、java实现

package cn.spark.study.streaming;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext; import scala.Tuple2; public class HDFSWordCount {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setMaster("local[2]")
.setAppName("WordCount"); JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(3)); // 首先,使用JavaStreamingContext的textFileStream()方法,针对HDFS目录创建输入数据流
JavaDStream<String> lines = jssc.textFileStream("hdfs://spark1:9000/wordcount_dir"); // 执行wordcount操作
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String line) throws Exception {
return Arrays.asList(line.split(" "));
}
}); JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
}); JavaPairDStream<String, Integer> wordcounts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}); wordcounts.print(); jssc.start();
jssc.awaitTermination();
jssc.close();
}
} ###运行脚本
[root@spark1 streaming]# cat hdfswordcount.sh
/usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit \
--class cn.spark.study.streaming.HDFSWordCount \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
--files /usr/local/hive/conf/hive-site.xml \
--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \
/usr/local/spark-study/java/streaming/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar \ ##此时打包上传,启动运行脚本,他就会一直监视hdfs的指定目录 ##把准备好的文件上传到hdfs,程序会马上读取到,并统计出来
hdfs dfs -mkdir /wordcount_dir
hdfs dfs -put t1.txt /wordcount_dir/t1.txt

2、scala实现

package cn.spark.study.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds object HDFSWordCount {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[2]").setAppName("HDFSWordCount")
val ssc = new StreamingContext(conf, Seconds(3)) val lines = ssc.textFileStream("hdfs://spark1:9000/wordcount_dir")
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print() ssc.start()
ssc.awaitTermination() }
} ##运行脚本
[root@spark1 streaming]# cat hdfswordcount.sh
/usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit \
--class cn.spark.study.streaming.HDFSWordCount \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
--files /usr/local/hive/conf/hive-site.xml \
--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \
/usr/local/spark-study/scala/streaming/spark-study-scala.jar \ ##打包--上传,运行脚本 ##程序会监控着hdfs目录,此时上传一个新文件到hdfs,程序会马上读取到并统计出来
hdfs dfs -put t2.txt /wordcount_dir/t2.txt

52、Spark Streaming之输入DStream之基础数据源以及基于HDFS的实时wordcount程序的更多相关文章

  1. 输入DStream之基础数据源以及基于HDFS的实时wordcount程序

    输入DStream之基础数据源以及基于HDFS的实时wordcount程序 一.Java方式 二.Scala方式 基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实 ...

  2. 55、Spark Streaming:updateStateByKey以及基于缓存的实时wordcount程序

    一.updateStateByKey 1.概述 SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这 ...

  3. 51、Spark Streaming之输入DStream和Receiver详解

    输入DStream代表了来自数据源的输入数据流.在之前的wordcount例子中,lines就是一个输入DStream(JavaReceiverInputDStream), 代表了从netcat(nc ...

  4. 53、Spark Streaming:输入DStream之Kafka数据源实战

    一.基于Receiver的方式 1.概述 基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Sp ...

  5. 50、Spark Streaming实时wordcount程序开发

    一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkCon ...

  6. Spark Streaming之三:DStream解析

    DStream 1.1基本说明 1.1.1 Duration Spark Streaming的时间类型,单位是毫秒: 生成方式如下: 1)new Duration(milli seconds) 输入毫 ...

  7. 在Spark shell中基于HDFS文件系统进行wordcount交互式分析

    Spark是一个分布式内存计算框架,可部署在YARN或者MESOS管理的分布式系统中(Fully Distributed),也可以以Pseudo Distributed方式部署在单个机器上面,还可以以 ...

  8. Spark练习之通过Spark Streaming实时计算wordcount程序

    Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...

  9. spark streaming (二)

    一.基础核心概念 1.StreamingContext详解 (一) 有两种创建StreamingContext的方式:             val conf = new SparkConf().s ...

随机推荐

  1. DevExpress中GridColumnCollection实现父子表数据绑定

    绑定数据: 父表: DataTable _parent = _dvFlt.ToTable().Copy(); 子表: DataTable _child = _dvLog.ToTable().Copy( ...

  2. 手把手教你打造高效的 Kubernetes 命令行终端

    Kubernetes 作为云原生时代的操作系统,熟悉和使用它是每名用户的必备技能.本文将介绍一些提高操作 Kubernetes 效率的技巧以及如何打造一个高效的 Kubernetes 命令行终端的方法 ...

  3. 【转载】C#使用Newtonsoft.Json组件来序列化对象

    在Asp.Net网站开发的过程中,很多时候会遇到对象的序列化和反序列化操作,Newtonsoft.Json组件是专门用来序列化和反序列化操作的一个功能组件,引入这个DLL组件后,就可使用JsonCon ...

  4. SOFABoot&SOFATracer

    SOFABoot快速开始 SOFABoot介绍 SOFABoot 是蚂蚁金服开源的基于 Spring Boot 的研发框架,它在 Spring Boot 的基础上,提供了诸如 Readiness Ch ...

  5. Nginx配置Yii:backend&frontend

    #My vlson.top project #frontend server { listen 80; server_name www.vlson.com; #charset koi8-r; set ...

  6. Firebird 事务隔离级别

    各种RDBMS事务隔离都差不多,Firebird 中大致分为3类: CONCURRENCY.READ_COMMITTED.CONSISTENCY. 在提供的数据库驱动里可设置的事务隔离级别大致如下3类 ...

  7. Spring 重定向(Redirect)指南

    原文:Hacking the IntegerCache in Java 9? 链接:https://dzone.com/articles/hacking-the-integercache-in-jav ...

  8. 【笔记】MAML-模型无关元学习算法

    目录 论文信息: Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networ ...

  9. SpringCloud2.0 Ribbon 服务发现 基础教程(四)

    1.启动[服务中心]集群,即 Eureka Server 参考 SpringCloud2.0 Eureka Server 服务中心 基础教程(二) 2.启动[服务提供者]集群,即 Eureka Cli ...

  10. 如何为SUSE配置IP地址,网关和DNS

    方法一.在命令行中配置.输入: ifconfig eht0 9.111.66.96 netmask 255.255.255.0 up route add default gw 9.111.66.1 方 ...