一、概述

1、Socket:之前的wordcount例子,已经演示过了,StreamingContext.socketTextStream()

2、HDFS文件
基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实时处理。相当于处理实时的文件流。 streamingContext.fileStream<KeyClass, ValueClass, InputFormatClass>(dataDirectory)
streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory) Spark Streaming会监视指定的HDFS目录,并且处理出现在目录中的文件。要注意的是,所有放入HDFS目录中的文件,都必须有相同的格式;
必须使用移动或者重命名的方式,将文件移入目录;一旦处理之后,文件的内容即使改变,也不会再处理了;基于HDFS文件的数据源是没有
Receiver的,因此不会占用一个cpu core。

二、代码实现

1、java实现

package cn.spark.study.streaming;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext; import scala.Tuple2; public class HDFSWordCount {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setMaster("local[2]")
.setAppName("WordCount"); JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(3)); // 首先,使用JavaStreamingContext的textFileStream()方法,针对HDFS目录创建输入数据流
JavaDStream<String> lines = jssc.textFileStream("hdfs://spark1:9000/wordcount_dir"); // 执行wordcount操作
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String line) throws Exception {
return Arrays.asList(line.split(" "));
}
}); JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
}); JavaPairDStream<String, Integer> wordcounts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}); wordcounts.print(); jssc.start();
jssc.awaitTermination();
jssc.close();
}
} ###运行脚本
[root@spark1 streaming]# cat hdfswordcount.sh
/usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit \
--class cn.spark.study.streaming.HDFSWordCount \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
--files /usr/local/hive/conf/hive-site.xml \
--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \
/usr/local/spark-study/java/streaming/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar \ ##此时打包上传,启动运行脚本,他就会一直监视hdfs的指定目录 ##把准备好的文件上传到hdfs,程序会马上读取到,并统计出来
hdfs dfs -mkdir /wordcount_dir
hdfs dfs -put t1.txt /wordcount_dir/t1.txt

2、scala实现

package cn.spark.study.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds object HDFSWordCount {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[2]").setAppName("HDFSWordCount")
val ssc = new StreamingContext(conf, Seconds(3)) val lines = ssc.textFileStream("hdfs://spark1:9000/wordcount_dir")
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print() ssc.start()
ssc.awaitTermination() }
} ##运行脚本
[root@spark1 streaming]# cat hdfswordcount.sh
/usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit \
--class cn.spark.study.streaming.HDFSWordCount \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
--files /usr/local/hive/conf/hive-site.xml \
--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \
/usr/local/spark-study/scala/streaming/spark-study-scala.jar \ ##打包--上传,运行脚本 ##程序会监控着hdfs目录,此时上传一个新文件到hdfs,程序会马上读取到并统计出来
hdfs dfs -put t2.txt /wordcount_dir/t2.txt

52、Spark Streaming之输入DStream之基础数据源以及基于HDFS的实时wordcount程序的更多相关文章

  1. 输入DStream之基础数据源以及基于HDFS的实时wordcount程序

    输入DStream之基础数据源以及基于HDFS的实时wordcount程序 一.Java方式 二.Scala方式 基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实 ...

  2. 55、Spark Streaming:updateStateByKey以及基于缓存的实时wordcount程序

    一.updateStateByKey 1.概述 SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这 ...

  3. 51、Spark Streaming之输入DStream和Receiver详解

    输入DStream代表了来自数据源的输入数据流.在之前的wordcount例子中,lines就是一个输入DStream(JavaReceiverInputDStream), 代表了从netcat(nc ...

  4. 53、Spark Streaming:输入DStream之Kafka数据源实战

    一.基于Receiver的方式 1.概述 基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Sp ...

  5. 50、Spark Streaming实时wordcount程序开发

    一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkCon ...

  6. Spark Streaming之三:DStream解析

    DStream 1.1基本说明 1.1.1 Duration Spark Streaming的时间类型,单位是毫秒: 生成方式如下: 1)new Duration(milli seconds) 输入毫 ...

  7. 在Spark shell中基于HDFS文件系统进行wordcount交互式分析

    Spark是一个分布式内存计算框架,可部署在YARN或者MESOS管理的分布式系统中(Fully Distributed),也可以以Pseudo Distributed方式部署在单个机器上面,还可以以 ...

  8. Spark练习之通过Spark Streaming实时计算wordcount程序

    Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...

  9. spark streaming (二)

    一.基础核心概念 1.StreamingContext详解 (一) 有两种创建StreamingContext的方式:             val conf = new SparkConf().s ...

随机推荐

  1. 关于使用KubeSphere中的docker配置Harbor仓库http访问docker login登陆报错的解决办法

    # 先进入harbor目录中,停止harbor docker-compose stop # 然后修改docker相关文件 # 第一种方式:修改/etc/docker/daemon.json { &qu ...

  2. igel udc2 config

    igel udc2 config 系统安装盘下载地址 http://www.myigel.biz/?forcedownload /config/bin/igelone_config #!/bin/sh ...

  3. K8S使用问题汇总

    1,报错如下 Warning: kubectl apply should be used on resource created by either kubectl create --save-con ...

  4. BFC特性及其简单应用

    BFC是什么? BFC(Block Formatting Context)中文直译就是‘块级格式上下文’,它是 W3C CSS 2.1 规范中的一个概念,它决定了元素如何对其内容进行定位,以及与其他元 ...

  5. Android App 架构演变

    文:https://www.jianshu.com/p/ce26e7960926 最近App项目(MVC架构)越做越大,协同开发效率较低,维护困难,所以产生了调整架构的想法,在 简书.csdn.知乎上 ...

  6. (摘录笔记)JAVA学习笔记SSH整合搭建项目

    1:当然是导jar包啦: struts2: spring: hibernate: 至于这些jar包是什么作用,我想就不必我解释了,大家都懂得,ssh2基本的jar包: 还有一些其他jar包:strut ...

  7. rancheros在vm主机部署

    问题描述: 容器化,越来越重要.在云服务中很大比例的服务都跑在容器中,今天介绍rancheros基于容器的os. 特点: 启动快,比较小系统服务也是基于容器化 使用最新的docker release ...

  8. android studio中为gradle指定cmake版本

    Android Studio相当于是Intellij基础上写了一个AS插件,这个插件使用gradle作为构建系统,因此构建出现问题先考虑gradle的文档. gradle可以使用native buil ...

  9. Linux操作系统的进程管理

    Linux操作系统的进程管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.进程相关概念 1>.进程概述 内核的功用: 进程管理.文件系统.网络功能.内存管理.驱动程序. ...

  10. php string常用函数

    <?php $a[]='a'; $a[]='b'; $a[]='C'; echo "</br>"; /* implode — 将一个一维数组的值转化为字符串 说明 ...