hdu3715
hdu3715
题意
给出一个递归的伪代码,当 x[a[dep]] + x[b[dep]] != c[dep],就向下递归,给出a,b,c数组的值 问 dep 最大多少。其中 0 <= c[i] <= 2 ,0 <= x[i] <= 1。
分析
x 取值存在对立关系( 1或0 ),那么可以通过不等式进行建边,有三种情况,
- 当 c[i] = 2 时,有 A and B = 0,即不能全部为真
- 当 c[i] = 1 时,有 A xor B = 0,加起来不能等于1
- 当 c[i] = 0 时,有 A or B != 0
二分m,判断可行性
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
using namespace std;
const int MAXN = 5e2 + 10;
const int MAXM = 1e4 + 10;
int n, m;
int vis[MAXN];
int flag[MAXN]; // 所属强连通分量的拓扑序
vector<int> G[MAXN], rG[MAXN]; // 注意初始化
vector<int> vs; // 后序遍历顺序的顶点列表
void addedge(int x, int y)
{
G[x].push_back(y); // 正向图
rG[y].push_back(x); // 反向图
}
void dfs(int u)
{
vis[u] = 1;
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(!vis[v]) dfs(v);
}
vs.push_back(u);
}
void rdfs(int u, int k)
{
vis[u] = 1;
flag[u] = k;
for(int i = 0; i < rG[u].size(); i++)
{
int v = rG[u][i];
if(!vis[v]) rdfs(v, k);
}
}
int scc() // 强连通分量的个数
{
vs.clear();
memset(vis, 0, sizeof vis);
for(int i = 0; i < n; i++)
if(!vis[i]) dfs(i);
memset(vis, 0, sizeof vis);
int k = 0;
for(int i = vs.size() - 1; i >= 0; i--)
if(!vis[vs[i]]) rdfs(vs[i], k++);
return k;
}
bool judge()
{
int N = n;
n = 2 * n;
scc();
n /= 2;
for(int i = 0; i < N; i++)
if(flag[i] == flag[N + i])
return false;
return true;
}
int a[MAXM], b[MAXM], c[MAXM];
void init(int can)
{
for(int i = 0; i < 2 * n; i++) G[i].clear(), rG[i].clear();
for(int i = 0; i <= can; i++) // 注意这里是等号
{
if(c[i] == 2) // A and B = 0
{
addedge(a[i], b[i] + n);
addedge(b[i], a[i] + n);
}
else if(c[i] == 1) // A xor B = 0
{
addedge(a[i], b[i]);
addedge(a[i] + n, b[i] + n);
addedge(b[i], a[i]);
addedge(b[i] + n, a[i] + n);
}
else // A or B != 0
{
addedge(a[i] + n, b[i]);
addedge(b[i] + n, a[i]);
}
}
}
void solve()
{
int l = 0, r = m, mid;
while(l + 1 < r)
{
mid = (l + r) / 2;
init(mid);
if(judge()) l = mid;
else r = mid;
}
printf("%d\n", l + 1); // 注意上面是等号,实际数量要加1
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++) scanf("%d%d%d", &a[i], &b[i], &c[i]);
solve();
}
return 0;
}
hdu3715的更多相关文章
- hdu3715 Go Deeper[二分+2-SAT]/poj2723 Get Luffy Out[二分+2-SAT]
这题转化一下题意就是给一堆形如$a_i + a_j \ne c\quad (a_i\in [0,1],c\in [0,2])$的限制,问从开头开始最多到哪条限制全是有解的. 那么,首先有可二分性,所以 ...
- HDU3715(二分+2-SAT)
Go Deeper Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- hdu3715 2-sat+二分
Go Deeper 题意:确定一个0/1数组(size:n)使得满足最多的条件数.条件在数组a,b,c给出. 吐槽:哎,一水提,还搞了很久!关键是抽象出题目模型(如上的一句话).以后做二sat:有哪些 ...
- hdu3715 二分+2sat+建图
题意: 给你一个递归公式,每多一层就多一个限制,问你最多能递归多少层. 思路: 先分析每一层的限制 x[a[i]] + x[b[i]] != c[i],这里面x[] = 0,1, ...
- 2-SAT算法
参考blog 参考论文 参考论文 题目 & 题解 裸2-SAT poj3683 poj3207 poj3678 poj3648 2-SAT + 二分法 poj2723 poj2749 hdu3 ...
随机推荐
- 1001. Exponentiation高精度运算总结
解题思路 这道题属于高精度乘法运算,要求输入一个实数R一个指数N,求实数R的N次方,由于R有5个数位,而N又特别大,因此用C++自带的数据类型放不下. 解题思路是通过数组储存每次乘积结果和底数的每一位 ...
- Linux学习---vi/vim命令
Vim是从 vi 发展出来的一个文本编辑器.代码补完.编译及错误跳转等方便编程的功能特别丰富,在程序员中被广泛使用. 所以本文直接用Vim编辑器 基本上 vi/vim 共分为三种模式,分别是命令模式( ...
- JSSDK微信自定义分享
背景:15年之前的微信分享只需要加入一段js就可以实现.后来微信官方全部禁止了.现在的微信分享全部得使用jssdk. 一.分享功能: 在微信内(必须在微信里)打开网站页面,分享给朋友或者分享到朋友圈时 ...
- Android -- 带你从源码角度领悟Dagger2入门到放弃
1,以前的博客也写了两篇关于Dagger2,但是感觉自己使用的时候还是云里雾里的,更不谈各位来看博客的同学了,所以今天打算和大家再一次的入坑试试,最后一次了,保证最后一次了. 2,接入项目 在项目的G ...
- redis 压缩链表
redis 压缩链表 概述 压缩链表是相对于普通链表而言的 当普通链表的数据越来越多, 链表查询性能会低效 当存储的数据较少时, 使用链表存储会浪费空间 压缩链表本质上是一个字符串 压缩链表内存储的数 ...
- C#小知识点记录(QQ交流群的一个小问题)Linq提取数据
请教 这里 LINQ想 找到 最后的 4条 记录 然后放在 这里这个 List Linq查找怎么写呀? 解答:写了一个小例子作为解答. namespace C_Sharp { class Progra ...
- Java匿名内部类使用与示例
首先说为什么有匿名类 两个原因(产生的使命) 1.简化代码编写 某种情况下,类只需要扩展一个方法,没必要为了一个方法单独去写一个子类,然后然后调用子类,此时需要匿名类 2.在不同的包内的类内调用类的p ...
- 创建,删除DOM
需求说明: 1.上传图片,有删除功能,可上传5张,至少上传一张 html代码如下 <div class="imgUpBox"> <div class=" ...
- 接口加密《二》: API权限设计总结
来源:http://meiyitianabc.blog.163.com/blog/static/105022127201310562811897/ API权限设计总结: 最近在做API的权限设计这一块 ...
- 跨域问题解决方案(HttpClient安全跨域 & jsonp跨域)
1 错误场景 今天要把项目部署到外网的时候,出现了这样的问题, 我把两个项目放到自己本机的tomcat下, 进行代码调试, 运行 都没有问题的, 一旦把我需要调用接口的项目B放到其他的服务器上, 就会 ...