https://www.51nod.com/tutorial/course.html#!courseId=3

转移方程: 注意如何对齐的。

这个算法的特点是,S和T字符串左边始终是对齐的。为了更好地理解这个算法中的递推公式,我们把两个字符串按照特定方式对齐。

以字符串S=ALGORITHM和T=ALTRUISTIC为例:

S和T的字符对齐方式为,假设我们已经知道最优的编辑方式:

  • 如果删去S中字符,则该字符对齐T中的空格
  • 如果删去T中字符,则该字符对齐S中的空格
  • 如果替换S中字符为T中字符,则这两个字符对齐

$dp[i][j]$表示字符串s从1到i与字符串t从1到j的最小编辑距离。

 #include<bits/stdc++.h>
#define INF 0x3f3f3f
using namespace std;
typedef long long ll;
char s[],t[];
int dp[][];
int main(){
scanf("%s",s+);
scanf("%s",t+);
int n=strlen(s+);
int m=strlen(t+);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
dp[i][j]=INF;
}
}
for(int i=;i<=n;i++) dp[i][]=i;
for(int j=;j<=m;j++) dp[][j]=j; for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
dp[i][j]=min(dp[i][j],dp[i-][j-]+(s[i]==t[j]?:));
dp[i][j]=min(dp[i][j],dp[i-][j]+);
dp[i][j]=min(dp[i][j],dp[i][j-]+);
}
} printf("%d\n",dp[n][m]);
return ;
}

[dp]编辑距离问题的更多相关文章

  1. DP编辑距离

    俄罗斯科学家Vladimir Levenshtein在1965年提出了编辑距离概念. 编辑距离,又称Levenshtein距离,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的三种编 ...

  2. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  3. POJ3356 – AGTC(区间DP&&编辑距离)

    题目大意 给定字符串X和Y,可以对字符串进行一下三种操作: 1.删除一个字符 2.插入一个字符 3.替换一个字符 每个操作代价是1,问运用以上三种操作把X变为Y所需的最小步数是多少? 题解 定义dp[ ...

  4. 经典dp 编辑距离

    给定两个字符串S和T,对于T我们可以进行三种操作 (1)在任意位置增加字符 (2)删除字符 (3)替换字符 问最少多少次能把T变成S? 设f(i,j)是S的前i位和T的前j位对齐的最小花费 接下来分析 ...

  5. 51nod 1183 编辑距离(dp)

    题目链接:51nod 1183 编辑距离 #include<cstdio> #include<cstring> #include<algorithm> using ...

  6. Codeforces 56D Changing a String 编辑距离 记忆dp

    主题链接:点击打开链接 编辑距离.,== 一边dp虽然录制前体累,,依然是dp #include<iostream> #include<cstdio> #include< ...

  7. POJ 3356 AGTC(DP求字符串编辑距离)

    给出两个长度小于1000的字符串,有三种操作,插入一个字符,删除一个字符,替换一个字符. 问A变成B所需的最少操作数(即编辑距离) 考虑DP,可以用反证法证明依次从头到尾对A,B进行匹配是不会影响答案 ...

  8. (编辑距离问题 线性DP) nyoj1431-DNA基因鉴定

    题目描述: 我们经常会听说DNA亲子鉴定是怎么回事呢?人类的DNA由4个基本字母{A,C,G,T}构成,包含了多达30亿个字符.如果两个人的DNA序列相差0.1%,仍然意味着有300万个位置不同,所以 ...

  9. HDU 4323 Magic Number(编辑距离DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=4323 题意: 给出n个串和m次询问,每个询问给出一个串和改变次数上限,在不超过这个上限的情况下,n个串中有多少个 ...

随机推荐

  1. SpringBoot学习笔记(4):与前端交互的日期格式

    SpringBoot学习笔记(4):与前端交互的日期格式 后端模型Date字段解析String 我们从前端传回来表单的数据,当涉及时间.日期等值时,后端的模型需将其转换为对应的Date类型等. 我们可 ...

  2. 声明:关于该博客部分Java等方向知识参考来源的说明

    [声明] 该博客部分代码是通过学习黑马程序员(传智播客)视频后,参考毕向东.张孝祥.杨中科等老师的公开课视频中讲解的代码,再结合自己的理解,自己手敲上去的,一方面加深自己的理解和方便以后自己用到的时候 ...

  3. js之定时器

    一.通过定时器我们可以间隔设定时间重复调用某个函数,利用这个特性,我们可以做很多事,例如,12306上的每间隔5秒查询自动查询一次余票,简单动画的实现等等 二.定时器的格式: 定时器有两种格式,分别是 ...

  4. debian下为stm32f429i-discovery编译uboot、linux内核和根文件系统

    交叉编译器:arm-uclinuxeabi-2010q1 交叉编译器下载下来后解压,然后将其中bin文件夹路径加入到PATH变量中. 根据<debian下烧写stm32f429I discove ...

  5. android 电池(三):android电池系统【转】

    本文转载自:http://blog.csdn.net/xubin341719/article/details/8709838 一.电池系统结构 Android中的电池使用方式主要有三种:AC.USB. ...

  6. memcached监控脚本

    #!/bin/bash . /etc/init.d/functions |wc -l` -lt ];then action "Memcached Serivce is error." ...

  7. 常用连续型分布介绍及R语言实现

    常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数 ...

  8. Codeforces 294B Shaass and Bookshelf:dp

    题目链接:http://codeforces.com/problemset/problem/294/B 题意: 有n本书,每本书的厚度为t[i],宽度为w[i] (1<=t[i]<=2, ...

  9. LSM Tree 学习笔记——本质是将随机的写放在内存里形成有序的小memtable,然后定期合并成大的table flush到磁盘

    The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and ex ...

  10. spring与mybati整合方法

    (1)spring配置文件: <!-- 引入jdbc配置文件 --> <context:property-placeholder location="jdbc.proper ...