1213 解的个数

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
 
 
 
题目描述 Description

已知整数x,y满足如下面的条件:

ax+by+c = 0

p<=x<=q

r<=y<=s

求满足这些条件的x,y的个数。

输入描述 Input Description

第一行有一个整数nn<=10),表示有n个任务。n<=10

以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s。均不超过108

输出描述 Output Description

n行,第i行是第i个任务的解的个数。

样例输入 Sample Input

2

2 3 -7 0 10 0 10

1 1 1 -10 10 -9 9

样例输出 Sample Output

1

19

数据范围及提示 Data Size & Hint
 

分类标签 Tags 点此展开

神坑啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊

以下内容摘自某大神的题解

1.首先我们可以很直观地看出来这是用扩展欧几里得算法解二元一次方程,但问题是我们所熟悉的扩欧能解的方程都是ax+by=gcd(a,b)形式的,而题目给出的是ax+by=-c形式。举个例子:

2x+4y=18,首先我们可以换成x+2y=9形式。9不是2和4的最大公约数1,但9是1的倍数,所以如果我们解出一组x,y满足x+2y=1,那么x和y都乘上9/1就是原方程的一组解了。如果c/gcd(a,b)==0,那么就没有整数解。

2.如今我们得到了一组x,y,根据扩欧定理的后续内容,适合的解系一定是(x+bk,y-ak),注意现在的a,b是简化后的方程的系数(拿上面提到的例子讲,现在a=1,b=2),枚举找在区间内的解的个数(组数)就好。

3.现在解决各种WA/TLE/RE问题:

(1)方程无解:c/gcd(a,b)==0,直接输出0;

(2)区间不合法:题目中没有保证区间左端点小于右端点,所以如果读入的区间不合法,直接输出0;

(3)a=0或b=0:

if((a==0)&&(y<r||y>s)) {printf("0\n");continue;}

     if((b==0)&&(x<p||x>q)) {printf("0\n");continue;}

因为不管加多少,x/y还是原来的味道……但是如果不加特判可能会导致TLE(这个跟代码具体的写法有关,我后面有用while循环,直接卡T了)

(4)a==0&&b==0:

RE的关键所在,因为gcd求出来是0……这个需要认真思考一下,如果c!=0,显然方程不成立,无解;如果c==0,x和y就可以任意取了,由乘法原理可得解的个数就是两个区间内部整数点的个数的乘积

if (c!=0)printf("0\n");

else

{

    ll cnt=(q-p+1)*(s-r+1);

    printf("%lld\n",cnt);

}         

continue;

(5)记得要开long long

两个神坑的数据点:

4

0 1 2 0 0 0 2

1 0 2 0 0 0 0

1 0 2 0 2 0 20

2 0 3 -10 10 -10 10

ans:0   0   0   0

4

0 0 0 -1 1 -1 1

0 0 0 1 -1 1 2

0 0 1 1 1 1 1

0 0 0 -3406792423987599 -23487749 23947250

ans:9   0   0   2753863780940000

 #include<iostream>
#include<cstdio>
using namespace std;
long long int x,y;
long long int tot=;
long long int a,b,c,p,q,r,s;
long long int gcd(long long int a,long long int b)
{
if(b==)
return a;
else
return gcd(b,a%b);
}
long long int exgcd(long long int a,long long int b,long long int & x,long long int & y)
{
if(b==)
{
x=;
y=;
return a;
}
long long int r=exgcd(b,a%b,x,y);
long long int tmp;
tmp=x;
x=y;
y=tmp-a/b*y;
return r;
}
int main()
{ int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
tot=;
//scanf("%lld %lld %lld %lld %lld %lld %lld",&a,&b,&c,&p,&q,&r,&s);
cin>>a>>b>>c>>p>>q>>r>>s;
c=-c;
if((a==)&&(y<r||y>s))
{
printf("0\n");
continue;
}
if((b==)&&(x<p||x>q))
{
printf("0\n");
continue;
} if(p>q||r>s)
{
cout<<<<endl;
continue;
} int gys=gcd(a,b);
if(gys==)
{
if (c!=)
{
printf("0\n");
continue;
}
else
{
tot=(q-p+)*(s-r+);
printf("%lld\n",tot);
continue;
}
}
if(c%gys!=)
{
cout<<<<endl;
continue;
}
exgcd(a,b,x,y);
x=x*(c/gys);
y=y*(c/gys);
a=a/gys;
b=b/gys;
while(x>=p)
{
x=x-b;
y=y+a;
}
while(x<p&&b!=)
{
x=x+b;
y=y-a;
}
while(x>=p&&x<=q&&y>=r&&y<=s)
{
tot++;
x=x+b;
y=y-a;
if(x<p||x>q||y<r||y>s)
break;
}
printf("%lld\n",tot);
} return ;
}

codevs 1213 解的个数的更多相关文章

  1. 扩展gcd codevs 1213 解的个数

    codevs 1213 解的个数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by ...

  2. Codevs 1213 解的个数(exgcd)

    1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c=0 p< ...

  3. codevs 1213 解的个数(我去年打了个表 - -)

    #include<iostream> #include<cstdio> #include<cstring> using namespace std; int T,x ...

  4. 解的个数(codevs 1213)

    题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...

  5. n元线性方程非负整数解的个数问题

    设方程x1+x2+x3+...+xn = m(m是常数) 这个方程的非负整数解的个数有(m+n-1)!/((n-1)!m!),也就是C(n+m-1,m). 具体解释就是m个1和n-1个0做重集的全排列 ...

  6. codevs1213 解的个数

    题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...

  7. P1098 方程解的个数

    题目描述 给出一个正整数N,请你求出x+y+z=N这个方程的正整数解的组数(1<=x<=y<=z<1000).其中,1<=x<=y<=z<=N . 输入 ...

  8. HDU1573 线性同余方程(解的个数)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. CODEVS——T1979 第K个数

    http://codevs.cn/problem/1979/ 时间限制: 1 s  空间限制: 1000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Descript ...

随机推荐

  1. Python发送邮件代码

    Python发送带附件的邮件代码 #coding: utf-8 import smtplib import sys import datetime from email.mime.text impor ...

  2. php http 缓存(客户端缓存)

    <?php /* * Expires:过期时间 * Cache-Control: 响应头信息 * (max-age:[秒]缓存过期时间(请求时间开始到过期时间的秒数), * s-maxage:[ ...

  3. kuangbin专题十六 KMP&&扩展KMP HDU3294 Girls' research

    One day, sailormoon girls are so delighted that they intend to research about palindromic strings. O ...

  4. PAT天梯赛L1-020 帅到没朋友

    题目链接:点击打开链接 当芸芸众生忙着在朋友圈中发照片的时候,总有一些人因为太帅而没有朋友.本题就要求你找出那些帅到没有朋友的人. 输入格式: 输入第一行给出一个正整数N(<=100),是已知朋 ...

  5. Tensorflow实践

    确定文件的编码格式 # -*- coding : utf-8 -*- 引入tensorflow库 import tensorflow as tf 定义常量 hw=tf.contant("he ...

  6. ubuntu开机自启动服务管理

    安装sysv-rc-conf sudo apt-get install sysv-rc-conf 执行下面,查看服务情况 sudo sysv-rc-conf 启动服务有以下两种方式 update-rc ...

  7. day_10 函数名,闭包,迭代器

    1. 函数名的使用 1.函数名是一个变量,函数名储存的是函数的内存地址 2.函数名可以赋值给其他变量 3.函数名可以当容器类对象的元素 4.函数名可以当其他函数的参数 5.函数名可以做函数的返回值 2 ...

  8. 关于web安全需要在编程时注意的

    公司用绿盟科技的远程安全评估系统扫描了项目,发现一些安全隐患,记录下来,以规避以后编程或者发布时犯同样的错误. 1. 目标web应用表单存在口令猜测攻击 风险:登录密码易被暴力破解,暴力破解是一种常见 ...

  9. JS电话、手机号码验证

    function isTelephone(inpurStr) {            var partten = /^0(([1,2]\d)|([3-9]\d{2}))-\d{7,8}$/;     ...

  10. 约瑟夫环问题poj1012

    题意: 有k个坏人k个好人坐成一圈,前k个为好人(编号1~k),后k个为坏人(编号k+1~2k) 现在有一个报数m,从编号为1的人开始报数,报到m的人就要自动死去. 问当m为什么值时,可以使得在出现好 ...