scikit-learn一般实例之四:使用管道和GridSearchCV选择降维
本例构建一个管道来进行降维和预测的工作:先降维,接着通过支持向量分类器进行预测.本例将演示与在网格搜索过程进行单变量特征选择相比,怎样使用GrideSearchCV和管道来优化单一的CV跑无监督的PCA降维与NMF降维不同类别评估器。
(原文:This example constructs a pipeline that does dimensionality reduction followed by prediction with a support vector classifier. It demonstrates the use of GridSearchCV and Pipeline to optimize over different classes of estimators in a single CV run – unsupervised PCA and NMF dimensionality reductions are compared to univariate feature selection during the grid search.)

# coding:utf-8
from __future__ import print_function, division
import numpy as np
from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.decomposition import PCA, NMF
from sklearn.feature_selection import SelectKBest, chi2
from pylab import *
pipe = Pipeline([
('reduce_dim', PCA()),
('classify', LinearSVC())
])
N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
{
'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
]
reducer_labels = [u'主成分分析(PCA)', u'非负矩阵分解(NMF)', u'KBest(chi2)']
grid = GridSearchCV(pipe, cv=3, n_jobs=2, param_grid=param_grid)
digits = load_digits()
grid.fit(digits.data, digits.target)
mean_scores = np.array(grid.cv_results_['mean_test_score'])
# 得分按照param_grid的迭代顺序,在这里就是字母顺序
mean_scores = mean_scores.reshape(len(C_OPTIONS), -1, len(N_FEATURES_OPTIONS))
# 为最优C选择分数
mean_scores = mean_scores.max(axis=0)
bar_offsets = (np.arange(len(N_FEATURES_OPTIONS)) *
(len(reducer_labels) + 1) + .5)
myfont = matplotlib.font_manager.FontProperties(fname="Microsoft-Yahei-UI-Light.ttc")
mpl.rcParams['axes.unicode_minus'] = False
plt.figure()
COLORS = 'bgrcmyk'
for i, (label, reducer_scores) in enumerate(zip(reducer_labels, mean_scores)):
plt.bar(bar_offsets + i, reducer_scores, label=label, color=COLORS[i])
plt.title(u"特征降维技术的比较",fontproperties=myfont)
plt.xlabel(u'特征减少的数量',fontproperties=myfont)
plt.xticks(bar_offsets + len(reducer_labels) / 2, N_FEATURES_OPTIONS)
plt.ylabel(u'数字的分类精度',fontproperties=myfont)
plt.ylim((0, 1))
plt.legend(loc='upper left',prop=myfont)
plt.show()
scikit-learn一般实例之四:使用管道和GridSearchCV选择降维的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- Selenium2学习-031-WebUI自动化实战实例-029-JavaScript 在 Selenium 自动化中的应用实例之四(获取元素位置和大小)
通过 JS 或 JQuery 获取到元素后,通过 offsetLeft.offsetTop.offsetWidth.offsetHeight 即可获得元素的位置和大小,非常的简单,直接上源码了,敬请参 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- scikit-learn一般实例之四:管道的使用:链接一个主成分分析和Logistic回归
主成分分析(PCA)进行无监督的降维,而逻辑回归进行预测. 我们使用GridSearchCV来设置PCA的维度 # coding:utf-8 from pylab import * import nu ...
- Angular4.0从入门到实战打造在线竞拍网站学习笔记之四--数据绑定&管道
Angular4.0基础知识之组件 Angular4.0基础知识之路由 Angular4.0依赖注入 数据绑定 数据绑定允许你将组件控制器的属性和方法与组件的模板连接起来,大大降低了开发时的编码量. ...
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
随机推荐
- Oracle Database 12c Data Redaction介绍
什么是Data Redaction Data Redaction是Oracle Database 12c的高级安全选项之中的一个新功能,Oracle中国在介绍这个功能的时候,翻译为“数据编纂”,在EM ...
- 学习ASP.NET Core, 怎能不了解请求处理管道[5]: 中间件注册可以除了可以使用Startup之外,还可以选择StartupFilter
中间件的注册除了可以借助Startup对象(DelegateStartup或者ConventionBasedStartup)来完成之外,也可以利用另一个叫做StartupFilter的对象来实现.所谓 ...
- 用游标实现查询当前服务器所有数据库所有表的SQL
declare @name varchar(100) DECLARE My_Cursor CURSOR --定义游标 FOR (SELECT Name FROM Master..SysDatabase ...
- C#——传值参数(1)
//我的C#是跟着猛哥(刘铁猛)(算是我的正式老师)<C#语言入门详解>学习的,微信上猛哥也给我讲解了一些不懂得地方,对于我来说简直是一笔巨额财富,难得良师! 这次与大家一起学习C#中的值 ...
- 5.2 Array类型的方法汇总
所有对象都具有toString(),toLocaleString(),valueOf()方法. 1.数组转化为字符串 toString(),toLocaleString() ,数组调用这些方法,则返回 ...
- 手机web如何实现多平台分享
话说App一般都带有分享到社交平台的入口,web网页的分享也有很不错的框架,但是随着HTML5的不断发展,手机web页面越来越多的进入到我们的生活中,那如何在我们的手机上完成分享呢?话说各大分享平台都 ...
- NPM如何更新到最新版
参考文章--npm更新到最新版本的方法 其实我们可以这样,随便新建一个文件夹例如:F:\test.按着"shift"键,右键该文件夹,选择"在此处打开命令窗口(W)&qu ...
- Git快速入门
如果你不想看长篇的Git教程,想快速了解Git的使用,那么本文可能会对你入门Git有所帮助.由于笔者用的是Windows系统,所以本文只写Git在Windows上的使用. 一.Git安装 去Git官网 ...
- Idea下用SBT搭建Spark Helloworld
没用过IDEA工具,听说跟Eclipse差不多,sbt在Idea其实就等于maven在Eclipse.Spark运行在JVM中,所以要在Idea下运行spark,就先要安装JDK 1.8+ 然后加入S ...
- linux下安装Redis以及phpredis模块
一:redis的安装 1. 首先上官网下载Redis 压缩包,地址:http://redis.io/download 下载 2. 通过远程管理工具,将压缩包拷贝到Linux服务器中,执行解压操作 3. ...