题意:$C_n^m\% k$

解题关键:扩展lucas+中国剩余定理裸题

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<cstdlib>
typedef long long ll;
using namespace std;
ll mod,n,m,x,y,module[],piset[],r[]; ll mod_pow(ll x,ll n,ll p){
ll res=;
while(n){
if(n&) res=res*x%p;
x=x*x%p;
n>>=;
}
return res;
} ll extgcd(ll a,ll b,ll &x,ll &y){
ll d=a;
if(b) d=extgcd(b,a%b,y,x),y-=a/b*x;
else x=,y=;
return d;
} ll inv(ll t,ll mod){ extgcd(t,mod,x,y);return (x+mod)%mod;} ll multi(ll n,ll pi,ll pk){//求非互质的部分
if (!n) return ;
ll ans=;
for (ll i=;i<=pk;i++) if(i%pi) ans=ans*i%pk;
ans=mod_pow(ans,n/pk,pk);
for (ll i=;i<=n%pk;i++) if(i%pi) ans=ans*i%pk;
return ans*multi(n/pi,pi,pk)%pk;
} ll exlucas(ll n,ll m,ll pi,ll pk){//组合数 c(n,m)mod pk=pi^k
if(m>n) return ;
ll a=multi(n,pi,pk),b=multi(m,pi,pk),c=multi(n-m,pi,pk);
ll k=;
for(ll i=n;i;i/=pi) k+=i/pi;
for(ll i=m;i;i/=pi) k-=i/pi;
for(ll i=n-m;i;i/=pi) k-=i/pi;
return a*inv(b,pk)%pk*inv(c,pk)%pk*mod_pow(pi,k,pk)%pk;//组合数求解完毕
} ll crt(int n,ll *r,ll *m){
ll M=,ret=;
for(int i=;i<n;i++) M*=m[i];
for(int i=;i<n;i++){
ll w=M/m[i];
ret+=w*inv(w,m[i])*r[i];
ret%=M;
}
return (ret+M)%M;
} ll fz(ll n,ll *m,ll *piset){//分解质因子
ll num=;
for (ll i=;i*i<=n;i++){
if(n%i==){
ll pk=;
while(n%i==) pk*=i,n/=i;
m[num]=pk;
piset[num]=i;
num++;
}
}
if(n>) m[num]=n,piset[num]=n,num++;
return num;
} ll excomb(ll n,ll m,ll p){
ll num=fz(p,module,piset);
for(int i=;i<num;i++){
r[i]=exlucas(n,m,piset[i],module[i]);
}
return crt(num,r,module);
} int main(){
cin>>n>>m>>mod;
printf("%d",excomb(n,m,mod));
return ;
}

[cf2015ICLFinalsDiv1J]Ceizenpok’s formula的更多相关文章

  1. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  2. GYM100633J. Ceizenpok’s formula 扩展lucas模板

    J. Ceizenpok’s formula time limit per test 2.0 s memory limit per test 256 MB input standard input o ...

  3. CF 2015 ICL, Finals, Div. 1 J. Ceizenpok’s formula [Lucas定理]

    http://codeforces.com/gym/100633/problem/J Lucas定理P不是质数裸题 #include <iostream> #include <cst ...

  4. [Codeforces 100633J]Ceizenpok’s formula

    Description 题库链接 求 \[C_n^m \mod p\] \(1\leq m\leq n\leq 10^{18},2\leq p\leq 1000000\) Solution 一般的 \ ...

  5. codeforces Gym - 100633J Ceizenpok’s formula

    拓展Lucas #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  6. Codeforces.100633J.Ceizenpok's formula(扩展Lucas)

    题目链接 ->扩展Lucas //求C_n^k%m #include <cstdio> typedef long long LL; LL FP(LL x,LL k,LL p) { L ...

  7. codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula【扩展lucas】

    传送门 [题意]: 求C(n,k)%m,n<=108,k<=n,m<=106 [思路]: 扩展lucas定理+中国剩余定理    #include<cstdio> usi ...

  8. codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula 扩展Lucas定理 扩展CRT

    默默敲了一个下午,终于过了, 题目传送门 扩展Lucas是什么,就是对于模数p,p不是质数,但是不大,如果是1e9这种大数,可能没办法, 对于1000000之内的数是可以轻松解决的. 题解传送门 代码 ...

  9. Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理

    http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...

随机推荐

  1. View数据呈现相关技术

    一.了解Razor语法 1.Razor基本语法 a)输出单一变量时不需要加分号做结尾.如: <p>现在时刻:@DateTime.Now</p> b)输出一段含有空白字元或运算子 ...

  2. ASP.NET MVC 相关的社群与讨论区

    ASP.NET MVC 官方论坛  http://forums.asp.net/1146.aspx 台湾微软MSDN论坛 --- ASP.NET 与 AJAX(ASP.NET AND AJAX)讨论区 ...

  3. hadoop 相关工具访问端口(转)

    原文:http://www.tuicool.com/articles/BB3eArJ hadoop系统部署时用到不少端口.有的是Web UI所使用的,有的是内部通信所使用的,有的是监控所使用的.实际系 ...

  4. Python学习笔记18:标准库之多进程(multiprocessing包)

    我们能够使用subprocess包来创建子进程.但这个包有两个非常大的局限性: 1) 我们总是让subprocess执行外部的程序,而不是执行一个Python脚本内部编写的函数. 2) 进程间仅仅通过 ...

  5. Python中urllib2总结

    使用Python访问网页主要有三种方式: urllib, urllib2, httpliburllib比较简单,功能相对也比较弱,httplib简单强大,但好像不支持session1. 最简单的页面访 ...

  6. EntityFramwork 查询

    EntityFramwork 查询 1.简单查询: SQL: SELECT * FROM [Clients] WHERE Type=1 AND Deleted=0 ORDER BY ID EF: // ...

  7. PHPCMS替换主页、列表页、内容页

    利用phpcms制作企业站,首先要将静态的企业主页替换成后台可编辑的动态主页. 在phpcms/install_package/phpcms/templates新建一个英文文件夹 在此文件夹下在创建一 ...

  8. PageHelper

    https://pagehelper.github.io/ Mybatis分页插件PageHelper简单使用 SpringBoot之分页PageHelper

  9. 编译EasyDSS rtmp流媒体服务器遇到stray '_239' inprogram,stray '_187' inprogram,stray '_191' inprogram的解决办法

    使用用户提供的交叉编译工具链编译easydss时遇到一个编译错误 stray '\239' inprogram stray '\187' inprogram stray '\191' inprogra ...

  10. EasyNVR H5流媒体服务器方案架构设计之视频能力平台

    历经过程 阶段一:经历过传统安防开发过程的开发者都有一种感觉,就是各种业务交织,各个模块的开发扯皮,各种数据库连接冲突,这很让开发工作效率很低,而且会给整体的开发带来负面影响,更重要的是,耦合度太高, ...