Jordan 标准型的推论
将学习到什么
从 Jordan 标准型出发,能够获得非常有用的信息.
Jordan 矩阵的构造
Jordan 矩阵
\begin{align}
J=\begin{bmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ && J_{n_k}(\lambda_k) \end{bmatrix} , \quad n_1+n_2+\cdots+n_k = n
\end{align}
有确定的构造,这种构造使得与之相似的任何矩阵都显然具有某些基本性质:
- Jordan 块的个数 \(k\) (计入同样的 Jordan 块出现的次数)就是 \(J\) 的线性无关的特征向量的最大个数
- 矩阵 \(J\) 可以对角化,当且仅当 \(k=n\), 即当且仅当所有的 Jordan 块都是 \(1\times 1\) 的
- 与一个给定的特征值对应的 Jordan 块的个数就是该特征值的几何重数,它也就是其相伴的特征空间的维数. 与一个给定的特征值对应的所有 Jordan 块的阶之和就是它的代数重数
- 设 \(A\in M_n\) 是一个给定的非零矩阵,假设 \(\lambda\) 是 \(A\) 的一个特征值. 利用Jordan 标准型定理中式 (8) 的定义,我们知道存在某个正整数 \(q\) ,使得
\begin{align}
r_1(A,\lambda) > r_2(A,\lambda) >\cdots >r_{q-1}(A,\lambda) >r_q(A,\lambda)=r_{q+1}(A,\lambda)
\end{align}
这个整数 \(q\) 就是 \(\lambda\) 作为 \(A\) 的特征值的指数;它也是 \(A\) 的以 \(\lambda\) 为特征值的最大 Jordan 块的阶.
矩阵与其转置的相似性
设 \(K_m\) 是 \(m\times m\) 反序矩阵(就是把单位矩阵 \(I_m\) 旋转 \(90^{\circ}\)), 它是对称的且是对合(\(A^2=I\))的:\(K_m=K_m^T=K_m^{-1}\).
可以验证 \(K_m J_m(\lambda)=J_m(\lambda)^T K_m\) 以及 \(J_m(\lambda) K_m=K_m J_m(\lambda)^T\), 从而 \(K_m J_m(\lambda)\) 与 \(J_m(\lambda) K_m\) 是对称的,且 \(J_m(\lambda)=K_m J_m(\lambda)^T K_m\),所以每一个 Jordan 块都相似于它的转置(通过一个反序矩阵). 这样一来,如果 \(J\) 是给定的 Jordan 矩阵,那么 \(J^T\) 与 \(J\) 通过对称的对合矩阵 \(K=K_{n_1}\oplus \cdots \oplus K_{n_k}\) 而相似:\(J^T=KJK\). 如果 \(S\in M_n\) 是非奇异的(不一定对称)且 \(A=SJS^{-1}\), 那么 \(J=S^{-1}AS\),
\begin{align}
A^T &=S^{-T}J^TS^T=S^{-T}KJKS^T=S^{-T}K(S^{-1}AS)KS^T \notag \\
&= (S^{-T}KS^{-1})A(SKS^T)=(SKS^T)^{-1}A(SKS^T)
\end{align}
且使得 \(A\) 与 \(A^T\) 之间的相似矩阵 \(SKS^T\) 是对称的. 这就证明了如下定理:
定理 1: 设 \(A\in M_n\). 则存在一个非奇异的复对称矩阵 \(S\), 使得 \(A^T=SAS^{-1}\).
若记
\begin{align}
A=SJS^{-1}=(SKS^T)(S^{-T}KJS^{-1})=(SJKS^T)(S^{-T}KS^{-1})
\end{align}
其中 \(KJ\) 与 \(JK\) 是对称的, 等式是凑的,拆开一合并就成立了. 这一结论证明了如下的定理:
定理 2: 每一个复方阵都是两个复对称矩阵的乘积,可以选择其中任一个因子是非奇异的.
对任意的域 \(\mathbf{F}\),已知 \(M_n({\mathbf{F}})\) 中的每个矩阵都可以通过 \(M_n({\mathbf{F}})\) 中某个对称矩阵相似于它的转置. 特别地,每一个实方阵都可以通过某个实对称矩阵与其转置相似.
几何重数-代数重数不等式
给定 \(A\in M_n\) 的一个特征值 \(\lambda\) 的几何重数是 \(A\) 的与 \(\lambda\) 对应的 Jordan 块的个数. 这个数小于或者等于与 \(\lambda\) 对应的所有 Jordan 块的阶之和,而这个和就是 \(\lambda\) 的代数重数. 于是,特征值的几何重数小于或者等于它的代数重数. 一个特征值 \(\lambda\) 的几何重数与代数重数相等,即 \(\lambda\) 是一个半单的特征值,当且仅当与 \(\lambda\) 对应的每一个 Jordan 块都是 \(1\times 1\) 的.
直和的 Jordan 标准型
设对 \(i=1,\cdots,m\) 给定 \(A_i\in M_{n_i}\), 并假设每一个 \(A_i=S_iJ_iS_i^{-1}\), 其中每一个 \(J_i\) 是一个 Jordan 矩阵. 这样,直和 \(A=A_1 \oplus \cdots \oplus A_m\) 就通过 \(S=S_1 \oplus \cdots \oplus S_m\) 相似于直和 \(J=J_1 \oplus \cdots \oplus J_m\). 此外, \(J\) 是 Jordan 块的直和的直和,所以它是一个 Jordan 矩阵,从而 Jordan 标准型的唯一性就保证了它是 \(A\) 的 Jordan 标准型.
秩 1 摄动的 Jordan 标准型
关于秩 1 摄动的特征值的 Brauer 定理对于 Jordan 块有类似的结论:在某种条件下,复方阵的一个特征值可能通过一个秩 1 摄动几乎任意地加以变动而不破坏该矩阵的 Jordan 结构的其余部分.
定理 3:设 \(n \geqslant 2\), 又令 \(\lambda,\lambda_2,\cdots,\lambda_n\) 是 \(A\in M_n\) 的特征值. 假设存在非零的向量 \(x,y \in \mathbb{C}^n\), 使得 \(Ax=\lambda x\), \(y^*A=\lambda y^*\), 且 \(y^*x \neq 0\). 那么
(a) 对某些正整数 \(k,n_1,\cdots,n_k\) 以及某个 \(\{v_1,\cdots,v_k\} \subset \{\lambda_2,\cdots,\lambda_n\}\), \(A\) 的 Jordan 标准型是
\begin{align}
[\lambda]\oplus J_{n_1}(v_1) \oplus \cdots \oplus J_{n_k}(v_k)
\end{align}
(b) 对任何满足 \(\lambda+v^*x \neq \lambda_j(j=2,\cdots,n)\) 的 \(v \in \mathbb{C}^n\), \(A+xv^*\) 的 Jordan 标准型是
\begin{align}
[\lambda+v^*x]\oplus J_{n_1}(v_1) \oplus \cdots \oplus J_{n_k}(v_k)
\end{align}
Jordan 标准型的推论的更多相关文章
- Jordan 标准型定理
将学习到什么 就算两个矩阵有相同的特征多项式,它们也有可能不相似,那么如何判断两个矩阵是相似的?答案是它们有一样的 Jordan 标准型. Jordan 标准型定理 这节目的:证明每个复矩阵都与一 ...
- Jordan 标准型的实例
将学习到什么 练习一下如何把一个矩阵化为 Jordan 标准型. 将矩阵化为 Jordan 标准型需要三步: 第一步 求出矩阵 \(A \in M_n\) 全部的特征值 \(\lambda_1,\ ...
- 【线性代数】 06 - Jordan标准型
现在就来研究将空间分割为不变子空间的方法,最困难的是我们还不知道从哪里着手.你可能想到从循环子空间出发,一块一块地进行分割,但这个方案的存在性和唯一性都不能解决.不变子空间分割不仅要求每个子空间\(V ...
- 线性代数 | Jordan 标准型的笔记
内容概述: 把方阵 A 的特征多项式 \(c(λ)=|λE-A|\) 展开成 \(c(λ)=\sum_ia_i\lambda^i\) 的形式,然后使用神乎其技的证明,得到 \(c(A)=O\),特征多 ...
- [转载] $\mathrm{Jordan}$标准型的介绍
本文转载自陈洪葛的博客$,$ 而实际上来自xida博客朝花夕拾$,$ 可惜该博客已经失效 $\mathrm{Jordan}$ 标准形定理是线性代数中的基本定理$,$ 专门为它写一篇长文好像有点多余$: ...
- [Bilingual] Different proofs of Jordan cardinal form (Jordan标准型的几种证明)
- 实 Jordan 标准型和实 Weyr 标准型
将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用. 实 Jordan 标准型 假设 \( ...
- Jordan 块的几何
设 $V$ 是复数域 $\mathbb{C}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, $A\in M_n(\mathbb{C})$ 是 $\varphi$ 在某组 ...
- Jordan标准形
一.引入 前面已经指出,一切n阶矩阵A可以分成许多相似类.今要在与A相似的全体矩阵中,找出一个较简单的矩阵来作为相似类的标准形.当然以对角矩阵作为标准形最好,可惜不是每一个矩阵都能与对角矩阵相似.因此 ...
随机推荐
- E20180601-hm
trade-off n. 权衡; 交易;(不是商业方面的交易,而是“利”与“弊”的权衡) vertex n. 顶点; 最高点; <数>(三角形.圆锥体等与底相对的)顶; (三角形.多边形等 ...
- Mac Apache
参考文章1 当前系统版本:Mac OS 10.11.6 一.使用 homebrew 安装 apache 停止系统自带的 apache 服务 $ sudo apachectl stop 卸载系统自带的 ...
- 怎样让自定义Cell的图片和文本自适应高度
Let's do it! 首先创建一个Model类 包括一个图片名称属性 还有文字内容属性 #import <Foundation/Foundation.h> @interface Mod ...
- MongoDb 抛出"Error retrieving nonce"异常
MongoDb在读取一个数据时抛出此异常, google之后也是只有源码没有任何相关结果, 考虑到之前同样的Db下不同的Collection没有发现此问题, 对比之后发现出错的url为: mongod ...
- 关于如何隐藏UITabbar的问题
关于如何隐藏UITabbar的问题,曾经困扰过很多人. 1,设为Hidden, 这种方法虽然将TabBar隐藏掉,但是下面是一片空白,没有起到隐藏的实际功效 2,设置tabbar.frame = CG ...
- 3.Python自我修炼(升仙中....整数,布尔值,字符串,for循环)
python学习(整数,布尔值,字符串,for循环) 1.整数 在python3中所有的整数都是int类型. 但在python2中如果数据量比较大. 会使用long类型.但是在python3中不存 ...
- bzoj1130:[POI2008]POD Subdivision of Kingdom
传送门 看到数据范围这么小,不由得算了一下暴力复杂度,算出来情况一共只有1e7,不多,再乘上暴力判断的复杂度,好像T了,判断的话位运算可以方便解决 但是我写的优化似乎比较渣,还留了个log,但是还是n ...
- mysql8必知必会6 外键约束 增加 查询 删除 MySQL注释
- ssrs 里 表头 分页后显示
1. 列组,箭头,高级 2.点击行组,静态 3. 设置静态行组 属性
- 软件管理命令-- rpm
RPM(红帽软件包管理器) 安装软件 rpm -ivh filename.rpm 升级软件 rpm -Uvh filename.rpm 卸载软件 rpm -e filename.rpm -i 安装一个 ...