https://oj.neu.edu.cn/problem/1387

给一个点数N <= 100000, 边 <= 1000000的无向图,求补图的联通块数,以及每个块包含的点数

由于点数太大,补图会是稠密图,甚至建立补图都要O(n^2),只能挖掘一下联通块,bfs,补图的性质,从原图入手求补图的联通块:

在原图中不直接相邻的点,在补图中一定属于同一个联通块

每个点只属于一个联通块,所以找好一个联通块之后可以删去这个联通块的所有点,把图规模缩小

这样子:1.准备一个集合放所有未探索的点,初始化时将1~N放进去

2.从集合中取一点放入队列(新的联通块)

3.当队列不为空时,从队列中取一个点u并弹出,将原图中与u直接相连的点标记;遍历集合,将在集合中的(即未探索的)并且未被标记的点(这些点属于本联通块)入队并从集合中删去,将标记删去。重复执行直到队列为空

4.集合不为空转2,为空结束

考虑有删除操作和时间问题,集合的实现当然是选择链表,用数组实现的双向链表即可 

优化有两个:一是通过原图找补图的联通块;二是把搜过的点删除,这样每次找未标记的点时比起从1循环到N更优(常数优化(误))

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int maxn = 1e5+, maxm = 1e6+, inf = 0x3f3f3f3f;
struct lnk{
int val;
int pre, nxt;
}lk[maxn];
struct edge{
int v, nxt;
}e[maxm*];
int head[maxn], tot, block_cnt, n, m;
int adj[maxn], vis[maxn], num[maxn];
void addedge(int u, int v){
e[tot] = (edge){v, head[u]};
head[u] = tot++;
}
void dele(int x){
lk[lk[x].nxt].pre = lk[x].pre;
lk[lk[x].pre].nxt = lk[x].nxt;
}
void src(){
for(int i = ; i <= n; i++){
vis[i] = adj[i] = ;
}
queue<int>Q;
block_cnt = ;
while(lk[].nxt != -){
//puts("blk++");
Q.push(lk[].nxt);
//printf("take %d\n", lk[0].nxt);
vis[lk[lk[].nxt].val] = ;
dele(lk[].nxt);
block_cnt++;
num[block_cnt] = ;
while(!Q.empty()){
int x = Q.front();
x = lk[x].val;
//printf("%d\n", x);
Q.pop();
for(int i = head[x]; ~i; i = e[i].nxt){
int v = e[i].v;
adj[v] = ;
}
for(int i = lk[].nxt; ~i; i = lk[i].nxt){
int w = lk[i].val;
if(!vis[w] && !adj[w]){
Q.push(w);
vis[w] = ;
dele(i);
num[block_cnt]++;
}
}
for(int i = head[x]; ~i; i = e[i].nxt){
int v = e[i].v;
adj[v] = ;
}
}
}
}
int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++)
head[i] = -;
tot = ;
while(m--){
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
for(int i = ; i <= n; i++){
lk[i].val = i;
lk[i].pre = i-;
lk[i].nxt = i+;
}
lk[n].nxt = -;
lk[].nxt = ;
src();
sort(num+, num+block_cnt+);
printf("%d\n", block_cnt);
for(int i = ; i <= block_cnt; i++){
printf("%d%c", num[i], i == block_cnt ? '\n' : ' ');
}
}
return ;
}
/*
3
5 7
1 2
1 3
1 4
1 5
2 3
2 4
2 5
6 9
1 4 1 5 1 6
2 4 2 5 2 6
3 4 3 5 3 6
3 3
1 2 2 3 3 1 */

链表加bfs求补图联通块的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  2. Feeding Time 【bfs求最大连通块】

    题目链接:https://ac.nowcoder.com/acm/contest/1870/J 题目大意:求最大的连通块是多大 主要是为了防止自己忘记bfs怎么写..... #include<s ...

  3. 分别利用并查集,DFS和BFS方法求联通块的数量

    联通块是指给定n个点,输入a,b(1<=a,b<=n),然后将a,b连接,凡是连接在一起的所有数就是一个联通块: 题意:第一行输入n,m,分别表示有n个数,有输入m对连接点,以下将要输入m ...

  4. 图-用DFS求连通块- UVa 1103和用BFS求最短路-UVa816。

    这道题目甚长, 代码也是甚长, 但是思路却不是太难.然而有好多代码实现的细节, 确是十分的巧妙. 对代码阅读能力, 代码理解能力, 代码实现能力, 代码实现技巧, DFS方法都大有裨益, 敬请有兴趣者 ...

  5. 【UVA10765】Doves and bombs (BCC求割点后联通块数量)

    题目: 题意: 给了一个联通无向图,现在问去掉某个点,会让图变成几个联通块? 输出的按分出的从多到小,若相等,输出标号从小到大.输出M个. 分析: BCC求割点后联通块数量,Tarjan算法. 联通块 ...

  6. 【BZOJ 1098】办公楼(补图连通块个数,Bfs)

    补图连通块个数这大概是一个套路吧,我之前没有见到过,想了好久都没有想出来QaQ 事实上这个做法本身就是一个朴素算法,但进行巧妙的实现,就可以分析出它的上界不会超过 $O(n + m)$. 接下来介绍一 ...

  7. 用dfs求联通块(UVa572)

    一.题目 输入一个m行n列的字符矩阵,统计字符“@”组成多少个八连块.如果两个字符所在的格子相邻(横.竖.或者对角线方向),就说它们属于同一个八连块. 二.解题思路 和前面的二叉树遍历类似,图也有DF ...

  8. 2014 Super Training #4 E Paint the Grid Reloaded --联通块缩点+BFS

    原题: ZOJ 3781 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 题意: 给一个n*m的X,O构成的格子,对 ...

  9. POJ-3107 Godfather 求每个节点连接的联通块数量

    dp[n][2],维护儿子的联通块数量和父亲的联通块数量. 第一遍dfs求儿子,第二遍dfs求爸爸. #include<iostream> #include<cstring> ...

随机推荐

  1. HTTP协议详解(二)

    接着第一篇学习.... 5 头域(首部) 每个头域由一个域名,冒号(:)和域值三部分组成.域名是大小写无关的,域值前可以添加任何数量的空格符,头域可以被扩展为多行,在每行开始处,使用至少一个空格或制表 ...

  2. Java面试题 静态代码块 构造代码块 构造方法 的执行顺序

    JAVA中的静态代码块 构造代码块 构造方法执行顺序: 静态代码块(类加载时执行)>>构造代码块>>构造方法 下面展示一个简单的例子,推荐大家动手运行一遍: public cl ...

  3. 初识C语言 (四)

    分支结构 if语句 C语言中的分支结构语句中的if条件语句,简单if语句的基本结构如下: 其语义是:如果表达式的值为真,则执行其后的语句,否则不执行该语句. 其过程可表示为下图 实例: if(resu ...

  4. Django提交表单时遇到403错误:CSRF verification failed

    这个问题是由跨站点伪造请求(CRSF)造成的,要彻底的弄懂这个问题就要理解什么是CRSF,以及Django提供的CSRF防护机制是怎么工作的. 什么是CSRF CSRF, Cross Site Req ...

  5. OpenCV中的KNN

    一.K近邻 有两个类,红色.蓝色.我将红色点标记为0,蓝色点标记为1.还要创建25个训练数据,把它们分别标记为0或者1.Numpy中随机数产生器可以帮助我们完成这个任务 import cv2 impo ...

  6. C#通过文件路径获取文件名小技巧

    string fullPath = @"\WebSite1\Default.aspx"; string filename = System.IO.Path.GetFileName( ...

  7. Angular Material design设计

    官网: https://material.io/design/ https://meterial.io/components 优秀的Meterial design站点: http://material ...

  8. 自己动手写Redis客户端(C#实现)2 - SET请求和状态回复(set)

    Redis请求协议的一般形式: *<参数数量> CR LF $<参数 的字节数量> CR LF <参数 的数据> CR LF ... $<参数 N 的字节数量 ...

  9. Python Trick —— 命令行显示

    1 应用场景 在命令行展示下,有以下两种场景. 进度条显示.在同一行展示不断的更新的进度条. 信息显示/隐藏控制.比如希望向多个用户展示不同信息,各个用户彼此保密. 2 进度条展示 跟c语言类似,打印 ...

  10. js实现页面重新加载

    https://blog.csdn.net/wangjian530/article/details/80596801