bzoj3122 [SDOI2013]随机数生成器
给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\)
求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\)
\(0\leq a,\ b,\ t,\ P\leq10^9,\ P\) 为质数
BSGS
首先化式子,推得
\]
因此
\]
所以上 \(BSGS\)
然而这题特判很恶心,不加特判 \(0\text{pts}\)
特判如下:
- \(x=t:ans=1\)
- \(a=1\)
- \(b=0:ans=-1\)
- \(b\neq0:ans=\frac{t-x}{b}+1\)
- \(a=0\)
- \(b=t:ans=2\)
- \(b\neq t:ans=-1\)
时间复杂度 \(O(T\sqrt P)\)
代码
#include <bits/stdc++.h>
using namespace std;
int P;
int qp(int a, int k) {
int res = bool(a);
for (; k; k >>= 1, a = 1ll * a * a % P) {
if (k & 1) res = 1ll * res * a % P;
}
return res % P;
}
int bsgs(int a, int b) {
if (!a && b) return -1;
map <int, int> s;
int sz = sqrt(P), inv_a = qp(a, P - 2), pw = qp(a, sz), cur = 1;
for (int i = 0; i <= sz; i++) {
s.insert(make_pair(1ll * b * cur % P, i)), cur = 1ll * cur * inv_a % P;
}
cur = 1;
map <int, int> :: iterator it;
for (int i = 0; i <= sz; i++, cur = 1ll * cur * pw % P) {
if ((it = s.find(cur)) != s.end()) {
return i * sz + (it -> second);
}
}
return -1;
}
int main() {
int Tests, a, b, x, t, A, B;
scanf("%d", &Tests);
while (Tests--) {
scanf("%d %d %d %d %d", &P, &a, &b, &x, &t);
a %= P, b %= P, x %= P, t %= P;
if (x == t) {
puts("1"); continue;
} else if (a == 1) {
if (!b) {
puts("-1"); continue;
}
printf("%d\n", 1ll * (t - x + P) * qp(b, P - 2) % P + 1);
continue;
} else if (!a) {
puts(b == t ? "2" : "-1");
continue;
}
A = a, B = 1ll * (1ll * a * t - t + b + P) % P * qp((b - x + 1ll * a * x + P) % P, P - 2) % P;
int ans = bsgs(A, B);
printf("%d\n", ~ans ? ans + 1 : ans);
}
return 0;
}
bzoj3122 [SDOI2013]随机数生成器的更多相关文章
- BZOJ3122: [Sdoi2013]随机数生成器(BSGS)
题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...
- bzoj千题计划259:bzoj3122: [Sdoi2013]随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=3122 等比数列求和公式+BSGS #include<map> #include<c ...
- [bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列
题目大意 给定递推序列: F[i] = a*F[i-1] + b (mod c) 求一个最小的i使得F[i] == t 题解 我们首先要化简这个数列,作为一个学渣,我查阅了一些资料: http://d ...
- BZOJ3122 [Sdoi2013]随机数生成器 【BSGS】
题目 输入格式 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 输出 ...
- 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判
[BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b, ...
- 【bzoj3122】: [Sdoi2013]随机数生成器 数论-BSGS
[bzoj3122]: [Sdoi2013]随机数生成器 当a>=2 化简得 然后 BSGS 求解 其他的特判 : 当 x=t n=1 当 a=1 当 a=0 判断b==t /* http: ...
- 【BZOJ-3122】随机数生成器 BSGS
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1362 Solved: 531[Submit][Sta ...
- 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1442 Solved: 552 Description ...
- 洛咕 P3306 [SDOI2013]随机数生成器
洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...
随机推荐
- 隔离 docker 容器中的用户
笔者在前文<理解 docker 容器中的 uid 和 gid>介绍了 docker 容器中的用户与宿主机上用户的关系,得出的结论是:docker 默认没有隔离宿主机用户和容器中的用户.如果 ...
- BlockingQueue 阻塞队列实现异步事件
转载请注明出处:https://www.cnblogs.com/wenjunwei/p/10411444.html 前言 本文通过一个简单的例子,来展现如何使用阻塞队列(BlockingQueue)来 ...
- c# IO操作
今天我们主要讨论的IO的一些操作,首先我们先引入三个变量: /// <summary> /// 配置绝对路径 /// </summary> private static str ...
- EF 批量 添加 修改 删除
1批量添加 db.T_Investigator.AddRange(list) 2批量删除 db.T_Investigator.RemoveRange(list) 3批量修改 for 循 ...
- (2)Maven快速入门_2maven在Eclipse中的设置
1.1 eclipse Maven 设置 [Eclipse Mars之后的版本已经集成了Maven] 1.1.1 eclipse 设置 Maven 下载jar的源码 和 doc 文件 勾 ...
- 修改tomcat的端口号
一.环境 tomcat7.0.notepad++(这个是一个文本编辑器,用记事本也可以) 二.修改方法 端口 第一步:找到tomcat7的conf目录下的 server.xml这个文件, ...
- JavaWeb学习日记----SAX解析XML
1.SAX解析XML文档的方式: 与DOM方式解析不同,DOM方式解析是根据XML的层级结构在内存中分配一个树形结构,把xml的标签,属性和文本都封装成对象.优点是可以很方便实现增删改操作.缺点是,如 ...
- GC垃圾回收
我们在开发需求的时候,可能很少关注到垃圾回收,因为我们绝大多数的时候都是使用的托管资源,托管资源的内存回收.net已经帮我们做了,但是.net的内存回收不是实时的,所以我们还是要关注下.net的垃圾回 ...
- i的二次幂求和
\(i^2\)求和 老祖宗告诉我们\(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\) 但是这玩意儿是怎么出来的呢?感觉网上用立方差证明的思路太low了,今天偶然 ...
- 网络最大流算法—最高标号预流推进HLPP
吐槽 这个算法.. 怎么说........ 学来也就是装装13吧.... 长得比EK丑 跑的比EK慢 写着比EK难 思想 大家先来猜一下这个算法的思想吧:joy: 看看人家的名字——最高标号预留推进 ...