CH03 k近邻法

前言

章节目录

  1. k近邻算法
  2. k近邻模型
    1. 模型
    2. 距离度量
    3. k值选择
    4. 分类决策规则
  3. k近邻法的实现: KDTree
    1. 构造KDTree
    2. 搜索KDTree

导读

kNN是一种基本分类与回归方法.

  • 0-1损失函数下的经验风险最小化
  • kNN的k和KDTree的k含义不同,
  • KDTree是一种存储k维空间数据的树结构
  • 建立空间索引的方法在点云数据处理中也有广泛的应用,KDTree和八叉树在3D点云数据组织中应用比较广
  • KDTree是二叉树
  • 另外,书中的KDTree实现的时候针对了一种k=1的特殊的情况

最近邻算法

k=1的情形, 称为最近邻算法. 书中后面的分析都是按照最近邻做例子, 这样不用判断类别, 可以略去一些细节.

k近邻模型

距离度量

特征空间中的两个实例点的距离是两个实例点相似程度的反映。

书中是如上描述的,这里要注意距离越近(数值越小), 相似度越大。

这里用到了$L_p$距离, 可以参考Wikipedia上$L_p$ Space词条

  1. p=1 对应 曼哈顿距离
  2. p=2 对应 欧氏距离
  3. 任意p 对应 闵可夫斯基距离

$$L_p(x_i, x_j)=\left(\sum_{l=1}^{n}{\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^p}\right)^{\frac{1}{p}}$$

考虑二维的情况, 上图给出了不同的p值情况下与原点距离为1的点的图形. 这个图有几点理解下:

  1. 与原点的距离
  2. 与原点距离为1的点
  3. 前一点换个表达方式, 图中的点向量($x_1$, $x_2$)的p范数都为1
  4. 图中包含多条曲线, 关于p=1并没有对称关系
  5. 定义中$p\geqslant1$,这一组曲线中刚好是凸的

这里要补充一点:

范数是对向量或者矩阵的度量,是一个标量,这个里面两个点之间的$L_p$距离可以认为是两个点坐标差值的p范数。

参考下例题3.1的测试案例,这个实际上没有用到模型的相关内容。

k值选择

  1. 关于k大小对预测结果的影响, 书中给的参考文献是ESL, 这本书还有个先导书叫ISL.
  2. 通过交叉验证选取最优k
  3. 二分类问题, k选择奇数有助于避免平票

分类决策规则

Majority Voting Rule

误分类率

$\frac{1}{k}\sum_{x_i\in N_k(x)}{I(y_i\ne c_i)}=1-\frac{1}{k}\sum_{x_i\in N_k(x)}{I(y_i= c_i)}$

如果分类损失函数是0-1损失, 误分类率最低即经验风险最小.

关于经验风险, 参考书上CH01第一章 (1.11)和(1.16)

实现

kNN在实现的时候,要考虑多维数据的存储,这里会用到树结构。

在Scipy Cookbook里面有个kd树具体的实现^2可参考

构造KDTree

KDTree的构建是一个递归的过程

注意KDTree左边的点比父节点小,右边的点比父节点大。

这里面有提到,平衡的KDTree搜索时效率未必是最优的,为什么

考虑个例子

[[1, 1],
[2, 1],
[3, 1],
[4, 1],
[5, 1],
[6, 1],
[100, 1],
[1000, 1]]

这个数据,如果找[100, 1]

搜索KDTree

这部分书中的例子是最近邻的搜索例子。

例子

例3.1

分析p值对最近邻点的影响,这个有一点要注意关于闵可夫斯基距离的理解:

  • 两点坐标差的p范数

具体看相关测试案例的实现

例3.2

KDTree创建

例3.3

KDTree搜索

graph TD
subgraph 对应图3.5
A[A]---B((B))
A---C((C))
B(B)---F((F))
B---D((D))
C(C)---G((G))
C---E((E))
end

这个例子说明了搜索的方法,理解一下书中的图3.5,对应的KDTree如上。

李航《统计学习方法》CH03的更多相关文章

  1. 李航统计学习方法——算法2k近邻法

    2.4.1 构造kd树 给定一个二维空间数据集,T={(2,3),(5,4),(9,6)(4,7),(8,1),(7,2)} ,构造的kd树见下图 2.4.2 kd树最近邻搜索算法 三.实现算法 下面 ...

  2. 李航-统计学习方法-笔记-3:KNN

    KNN算法 基本模型:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例.这k个实例的多数属于某个类,就把输入实例分为这个类. KNN没有显式的学习过程. KNN使用的模型 ...

  3. 李航统计学习方法(第二版)(六):k 近邻算法实现(kd树(kd tree)方法)

    1. kd树简介 构造kd树的方法如下:构造根结点,使根结点对应于k维空间中包含所有实例点的超矩形区域;通过下面的递归方法,不断地对k维空间进行切分,生成子结点.在超矩形区域(结点)上选择一个坐标轴和 ...

  4. 李航统计学习方法(第二版)(五):k 近邻算法简介

    1 简介 k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类.k近邻法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通 ...

  5. 李航统计学习方法(第二版)(十):决策树CART算法

    1 简介 1.1 介绍 1.2 生成步骤 CART树算法由以下两步组成:(1)决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大;(2)决策树剪枝:用验证数据集对己生成的树进行剪枝并选择最优子 ...

  6. Adaboost算法的一个简单实现——基于《统计学习方法(李航)》第八章

    最近阅读了李航的<统计学习方法(第二版)>,对AdaBoost算法进行了学习. 在第八章的8.1.3小节中,举了一个具体的算法计算实例.美中不足的是书上只给出了数值解,这里用代码将它实现一 ...

  7. 统计学习方法学习(四)--KNN及kd树的java实现

    K近邻法 1基本概念 K近邻法,是一种基本分类和回归规则.根据已有的训练数据集(含有标签),对于新的实例,根据其最近的k个近邻的类别,通过多数表决的方式进行预测. 2模型相关 2.1 距离的度量方式 ...

  8. 统计学习方法(李航)朴素贝叶斯python实现

    朴素贝叶斯法 首先训练朴素贝叶斯模型,对应算法4.1(1),分别计算先验概率及条件概率,分别存在字典priorP和condP中(初始化函数中定义).其中,计算一个向量各元素频率的操作反复出现,定义为c ...

  9. 李航《统计学习方法》CH01

    CH01 统计学方法概论 前言 章节目录 统计学习 监督学习 基本概念 问题的形式化 统计学习三要素 模型 策略 算法 模型评估与模型选择 训练误差与测试误差 过拟合与模型选择 正则化与交叉验证 正则 ...

  10. 【NLP】基于统计学习方法角度谈谈CRF(四)

    基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

随机推荐

  1. maven配置国内阿里云镜像

    <mirrors> <mirror> <id>alimaven</id> <mirrorOf>central</mirrorOf> ...

  2. flask 电子邮件Flask-Mail

    电子邮件 在web程序中,经常会需要发送电子邮件.比如,在用户注册账户时发送确认邮件:定期向用户发送热门内容或是促销信息等等.在Web程序中发送电子邮件并不复杂,借助扩展Flask-Mail或是第三方 ...

  3. HTML5培训入门基础知识了解CSS3 3D属性

    CSS3 3D 什么是3d的场景呢? 2d场景,在屏幕上水平和垂直的交叉线x轴和y轴 3d场景,在垂直于屏幕的方法,相对于3d多出个z轴 Z轴:靠近屏幕的方向是正向,远离屏幕的方向是反向 CSS3中的 ...

  4. LoadXml 加载XML时,报错:“根级别上的数据无效。 行1,位置1“

    ==XML=================================== <?xml version="1.0" encoding="utf-8" ...

  5. IIS + FastCGI+php(从5.2升级到5.3)

    由于PHP5.3 的改进,原有的IIS 通过isapi 方式解析PHP脚本已经不被支持,PHP从5.3.0 以后的版本开始使用微软的 fastcgi 模式,这是一个更先进的方式,运行速度更快,更稳定. ...

  6. CCF CSP 201612-1 中间数

    题目链接:http://118.190.20.162/view.page?gpid=T52 问题描述 试题编号: 201612-1 试题名称: 中间数 时间限制: 1.0s 内存限制: 256.0MB ...

  7. Redis连接池

    package com.lee.utils; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; impor ...

  8. mysql8操作命令(持续更新)

    mysql服务管理 查看服务状态 systemctl status mysqld.service 启动服务 systemctl start mysqld.service 关闭服务 systemctl ...

  9. fork项目适合全局替换注释说明

    sublimeText 正则替换 (@date) (\d+-\d+-\d+)$1 2016-11-17 (@author) (\w+)$1 youName

  10. Java ascii码值转为输出ascii码

    Java ascii码值转为输出ascii码 public static void main(String[] args) { // TODO Auto-generated method stub S ...