[CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee }
span.s1 { }
span.s2 { text-decoration: underline }
Is object localization for free? –Weakly-supervised learning with convolutional neural networks. Maxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic
http://www.di.ens.fr/~josef/publications/Oquab15.pdf
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
span.s2 { background-color: #fefa00 }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }
亮点
- 一个好名字给了让读者开始阅读的理由
- global max pooling over sliding window的定位方法值得借鉴
方法
本文的目标是:设计一个弱监督分类网络,注意本文的目标主要是提升分类。因为是2015年的文章,方法比较简单原始。
Following three modifications to a classification network.
- Treat the fully connected layers as convolutions, which allows us to deal with nearly arbitrary-sized images as input.
- The aim is to apply the network to bigger images in a sliding window manner thus extending its output to n×m× K, where n and m denote the number of sliding window positions in the x- and y- direction in the image, respectively.
- 3xhxw —> convs —> kxmxn (k: number of classes)
- Explicitly search for the highest scoring object position in the image by adding a single global max-pooling layer at the output.
- kxmxn —> kx1x1
- The max-pooling operation hypothesizes the location of the object in the image at the position with the maximum score
- Use a cost function that can explicitly model multiple objects present in the image.
因为图中可能有很多物体,所以多类的分类loss不适用。作者把这个任务视为多个二分类问题,loss function和分类的分数如下
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333; min-height: 15.0px }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
li.li1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
ul.ul1 { list-style-type: disc }
training
muti-scale test
实验
classification
- mAP on VOC 2012 test: +3.1% compared with [56]
- mAP on VOC 2012 test: +7.6% compared with kx1x1 output and single scale training
- mAP on VOC: +2.6% compared with RCNN
- mAP on COCO 62.8%
Localisation
- Metric: if the maximal response across scales falls within the ground truth bounding box of an object of the same class within 18 pixels tolerance, we label the predicted location as correct. If not, then we count the response as a false positive (it hit the background), and we also increment the false negative count (no object was found).
- metric on VOC 2012 val: -0.3% compared with RCNN
- mAP on COCO 41.2%
缺点
- 定位评测的metric不具有权威性
- max pooling改为average pooling会不会对于多个instance的情况更好一些
[CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记的更多相关文章
- Coursera, Deep Learning 4, Convolutional Neural Networks, week3, Object detection
学习目标 Understand the challenges of Object Localization, Object Detection and Landmark Finding Underst ...
- 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking arXiv Paper ...
- tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...
- [CVPR2017] Weakly Supervised Cascaded Convolutional Networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee } p. ...
- A brief introduction to weakly supervised learning(简要介绍弱监督学习)
by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难 ...
- [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 0.Learning Goals
Learning Goals: Understand the challenges of Object Localization, Object Detection and Landmark Find ...
- [C4W3] Convolutional Neural Networks - Object detection
第三周 目标检测(Object detection) 目标定位(Object localization) 大家好,欢迎回来,这一周我们学习的主要内容是对象检测,它是计算机视觉领域中一个新兴的应用方向, ...
- 论文笔记(7):Constrained Convolutional Neural Networks for Weakly Supervised Segmentation
UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习.训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息.该文章的方法将imag ...
随机推荐
- XBMC源代码分析 3:核心部分(core)-综述
前文分析了XBMC的整体结构以及皮肤部分: XBMC源代码分析 1:整体结构以及编译方法 XBMC源代码分析 2:Addons(皮肤Skin) 本文以及以后的文章主要分析XBMC的VC工程中的源代码. ...
- Hive 配置
<?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="confi ...
- Linux 用户打开进程数的调整
Linux 用户打开进程数的调整 参考文章: 关于RHEL6中ulimit的nproc限制(http://www.cnblogs.com/kumulinux/archive/2012/12/16/28 ...
- 【翻译】使用Sencha Touch创建基于Tizen应用程序
原文:Building a Tizen App With Sencha Touch 作者:Gautam Agrawal Gautam Agrawal is Sencha's Sr. Product M ...
- OAF开发概念和案例总结(项目总结)
留看: 网上关于OAF学习的资料比较少,最近有些时间,整理了下自己在项目上的经验总结和同学们一下共享一下 和学友一起讨论一下OAF开发,还有两个比较复杂的系列正在整理中..... 一.OAF EO定义 ...
- Android开发技巧——自定义单选或多选的ListView
这篇其实应该是属于写自定义单选或多选的ListView的基础教程,无奈目前许多人对此的实现大多都绕了远路,反而使得这正规的写法倒显得有些技巧性了. 本文原创,转载请注明在CSDN上的出处: http: ...
- Android网络请求框架之Retrofit实践
网络访问框架经过了从使用最原始的AsyncTask构建简单的网络访问框架(甚至不能称为框架),后来使用开源的android-async-http库,再到使用google发布的volley库,一直不懈的 ...
- The 15th tip of DB Query Analyzer
The 15th tip of DB Query Analyzer ---- SQL Execute Schedule function is realized in 6.01 Ma Gen ...
- Sharepoint 2010 自定义WebService 找不到网站应用程序
错误描述:Net 开发WebService调用Microsoft.SharePoint.dll的服务器端对象模型,出现找不到网站的应用程序,或者出现500错误. 错误截图: [Webservice调用 ...
- javascript访问html元素的内容(1)
形如如下格式的html元素: <p id="my_p">I'm <strong>BIG</strong> panda!!!</p> ...