[ZJOI2007]棋盘制作
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
3 3
1 0 1
0 1 0
1 0 0
4
6
说明
对于20%的数据,N, M ≤ 80
对于40%的数据,N, M ≤ 400
对于100%的数据,N, M ≤ 2000
题解:
动态规划
令L[i][j]表示左边,R[i][j]表示右边,H[i][j]表示上面
转移如下,当a[i][j]!=a[i-1][j]时
L[i][j]=min(L[i][j],L[i-1][j]),R[i][j]=min(R[i][j],R[i-1][j])
H[i][j]=H[i-1][j]+1
显然,正方形取min(H[i][j]+1,L[i][j]+R[i][j]-1)
矩形取(H[i][j]+1)*(L[i][j]+R[i][j]-1)
本来分析觉得不需要R数组,但是只有60分,加上R数组就AC不知道为什么
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
int a[][],f[][],L[][],H[][],R[][],ans1,n,m,ans2;
int main()
{int i,j;
cin>>n>>m;
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
{
scanf("%d",&a[i][j]);
}
}
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
if (a[i][j-]!=a[i][j]) L[i][j]=L[i][j-]+;
else L[i][j]=;
for (j=m;j>=;j--)
if (a[i][j+]!=a[i][j]) R[i][j]=R[i][j+]+;
else R[i][j]=;
}
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
{
if (a[i][j]!=a[i-][j])
{
H[i][j]=H[i-][j]+;
L[i][j]=min(L[i][j],L[i-][j]);
R[i][j]=min(R[i][j],R[i-][j]);
}
}
}
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
{
ans2=max(ans2,(L[i][j]+R[i][j]-)*(H[i][j]+));
ans1=max(ans1,min(L[i][j]+R[i][j]-,H[i][j]+));
}
}
cout<<ans1*ans1<<endl<<ans2;
}
[ZJOI2007]棋盘制作的更多相关文章
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
- [luogu P1169] [ZJOI2007]棋盘制作
[luogu P1169] [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的 ...
- 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...
- 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...
- BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 3248 Solved: 1636 [Submit][St ...
随机推荐
- Flask 扩展 国际化 本地化
pip install flask-babel 先初始化一个Flask-Babel的实例 from flask import Flask from flask.ext.babel import Bab ...
- mvc架构模式概念
MVC模式是"Model-View-Controller"的缩写,中文翻译为"模式-视图-控制器".MVC应用程序总是由这三个部分组成.Event(事件)导致C ...
- bzoj千题计划276:bzoj4515: [Sdoi2016]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=4515 把lca带进式子,得到新的式子 然后就是 维护树上一次函数取min 一个调了一下午的错误: 当 ...
- MySQL/MariaDB中游标的使用
本文目录:1.游标说明2.使用游标3.游标使用示例 1.游标说明 游标,有些地方也称为光标.它的作用是在一个结果集中逐条逐条地获取记录行并操作它们. 例如: 其中select是游标所操作的结果集,游标 ...
- JAVA_SE基础——71.Random类制作随机验证码
public class Demo5 { public static void main(String[] args) { char[] arr={'s','b','g','h','a','c'}; ...
- MSSQL---extents
一.MSSQLextent分两种: 1. Mixed extent:每个表或索引创建时,MSSQL并不给它分配一个extent,而是在mixed extnet内分配一个页,空间需求扩大时,再分配一个… ...
- SpringCloud的EurekaClient : 客户端应用访问注册的微服务(无断路器场景)
演示客户端应用如何访问注册在EurekaServer里的微服务 一.概念和定义 采用Ribbon或Feign方式访问注册到EurekaServer中的微服务.1.Ribbon实现了客户端负载均衡,2. ...
- less规范
Less 编码规范 (1.1) 简介 该文档主要的设计目标是提高 Less 文档的团队一致性与可维护性. Less 代码的基本规范和原则与 CSS 编码规范 保持一致. 编撰 吕俊涛 本文档由商业运营 ...
- python实现 多叉树 寻找最短路径
完全原创,能力有限,欢迎参考,未经允许,请勿转载 ! 完全原创,能力有限,欢迎参考,未经允许,请勿转载 ! 完全原创,能力有限,欢迎参考,未经允许,请勿转载 ! 完全原创,能力有限,欢迎参考,未经允许 ...
- ShellCode瘦身的艺术0_HASH
写在前面的话: 前面几篇文章,我们介绍了如何获取kernerl32.dll导出函数地址的方法: 并在此基础上,编写了ShellCode,实现了动态加载DLL以及解析API地址: 但是,似乎还称不上Pe ...