[ZJOI2007]棋盘制作
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
3 3
1 0 1
0 1 0
1 0 0
4
6
说明
对于20%的数据,N, M ≤ 80
对于40%的数据,N, M ≤ 400
对于100%的数据,N, M ≤ 2000
题解:
动态规划
令L[i][j]表示左边,R[i][j]表示右边,H[i][j]表示上面
转移如下,当a[i][j]!=a[i-1][j]时
L[i][j]=min(L[i][j],L[i-1][j]),R[i][j]=min(R[i][j],R[i-1][j])
H[i][j]=H[i-1][j]+1
显然,正方形取min(H[i][j]+1,L[i][j]+R[i][j]-1)
矩形取(H[i][j]+1)*(L[i][j]+R[i][j]-1)
本来分析觉得不需要R数组,但是只有60分,加上R数组就AC不知道为什么
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
int a[][],f[][],L[][],H[][],R[][],ans1,n,m,ans2;
int main()
{int i,j;
cin>>n>>m;
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
{
scanf("%d",&a[i][j]);
}
}
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
if (a[i][j-]!=a[i][j]) L[i][j]=L[i][j-]+;
else L[i][j]=;
for (j=m;j>=;j--)
if (a[i][j+]!=a[i][j]) R[i][j]=R[i][j+]+;
else R[i][j]=;
}
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
{
if (a[i][j]!=a[i-][j])
{
H[i][j]=H[i-][j]+;
L[i][j]=min(L[i][j],L[i-][j]);
R[i][j]=min(R[i][j],R[i-][j]);
}
}
}
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
{
ans2=max(ans2,(L[i][j]+R[i][j]-)*(H[i][j]+));
ans1=max(ans1,min(L[i][j]+R[i][j]-,H[i][j]+));
}
}
cout<<ans1*ans1<<endl<<ans2;
}
[ZJOI2007]棋盘制作的更多相关文章
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
- [luogu P1169] [ZJOI2007]棋盘制作
[luogu P1169] [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的 ...
- 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...
- 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...
- BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 3248 Solved: 1636 [Submit][St ...
随机推荐
- oracle导入dmp文件的2种方法
使用imp.impdp方式导入数据 1.使用imp导入数据 打开cmd窗口,然后直接敲入一下命令即可,需要注意的是,要事先把dmp文件放到正确的路径中去 imp yx_base/@yx_192. fi ...
- 20155227 实现mypwd
20155227 实现mypwd 1 学习pwd命令 2 研究pwd实现需要的系统调用(man -k; grep),写出伪代码 3 实现mypwd 4 测试mypwd 课堂学习笔记 实现mypwd 在 ...
- Beta冲刺 第六天
Beta冲刺 第六天 1. 昨天的困难 1.对于设计模式的应用不熟悉,所以在应用上出现了很大的困难. 2.SSH中数据库的管理是用HQL语句实现的,所以在多表查询时出现了很大的问题. 3.页面结构太凌 ...
- SQL函数返回表的示例-Z
create function [dbo].[GetOperateCustGroup] ( ), ) ) returns @TempTable table (MaxPrice float,MinPri ...
- 敏捷冲刺报告--Day5
敏捷冲刺报告--Day5 情况简介 GUI框架重写, 添加功能 任务进度 赵坤: 后端爬虫bug修复 李世钰: GUI编写 黄亦薇:更新sprint backlog.编写每日报告 王成科:召集小组成员 ...
- Django Haystack 全文检索与关键词高亮
Django Haystack 简介 django-haystack 是一个专门提供搜索功能的 django 第三方应用,它支持 Solr.Elasticsearch.Whoosh.Xapian 等多 ...
- 第十条:始终要覆盖toString()方法
Object类提供的toString()方法如下: public String toString() { return getClass().getName() + "@" ...
- ajax的四种type类型
1.GET请求会向数据库发索取数据的请求,从而来获取信息,该请求就像数据库的select操作一样,只是用来查询一下数据,不会修改.增加数据,不会影响资源的内容,即该请求不会产生副作用.无论进行多少次操 ...
- mycat入门_介绍与安装
利用闲暇时间接触了下mycat. 一.介绍 1.概述: 国内最活跃的.性能最好的开源数据库中间件,可以理解为数据库和应用层之间的一个代理组件. 2.作用: 读写分离.分表分库.主从切换. 3.原理: ...
- 【原创】Webpack构建中hash的优化
背景: SPA的vue应用,采用webpack2构建,打包入口为main.js 输出:main模块打包成app.js,公共lib打包成vendor.js,公共样式打包成app.css,运行时依赖打包成 ...