由于只有3行,因此只会会换行2次,假设$x, y$分别为这两次的换行点

那么答案为$S[1][x] +S[2][y] - S[2][x - 1] + S[3][n] - S[3][y - 1]$

其中,$S[i]$表示第$i$行的前缀和

令$a[x] = S[1][x] - S[2][x - 1], b[y] = S[2][y] - S[3][y - 1]$

考虑枚举$x$,那么问题转化为询问在一堆数中求一个数$k$使得$v (= a[x] + S[3][n]) + k \;mod\;p$最大

分两种情况考虑,第一种$v + k \in [v, mod - 1]$,那么$k \in [0, mod - k - 1]$,并且$k$越大越好

第二种不如第一种好,但有可能不得不选,$v + k \in [1, v - 1]$,同样时$k$越大越好

也就是说,需要一种支持插入,查询前驱和最大值的数据结构,$set$就可以

注:倒叙枚举$x$,可以做到不删除

复杂度$O(n \log n)$

#include <set>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define ll long long
#define ri register int
#define sid 200050 int n, ans, mod;
int s[][sid], a[sid], b[sid]; set <int> ex; int main() {
n = read(); mod = read();
for(ri i = ; i <= ; i ++)
for(ri j = ; j <= n; j ++)
s[i][j] = (s[i][j - ] + read()) % mod; for(ri i = ; i <= n; i ++) a[i] = (s[][i] - s[][i - ] + mod) % mod;
for(ri i = ; i <= n; i ++) b[i] = (s[][i] - s[][i - ] + mod) % mod; int der = s[][n]; ex.insert();
for(ri i = n; i >= ; i --) {
ex.insert(-b[i]);
int v = (der + a[i]) % mod;
int p = *ex.lower_bound(-(mod - - v));;
if(p == ) ans = max(ans, (v - *(++ ex.begin())) % mod);
else ans = max(ans, v + -p);
} printf("%d\n", ans);
return ;
}

51nod1624 取余最长路 前缀和 + set的更多相关文章

  1. 1624 取余最长路(set)

    1624 取余最长路 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 佳佳有一个n*m的带权矩阵,她想从(1,1)出发走到(n,m)且只能往右往下移动,她能得到的娱 ...

  2. 51 nod 1624 取余最长路 思路:前缀和 + STL(set)二分查找

    题目: 写这题花了我一上午时间. 下面是本人(zhangjiuding)的思考过程: 首先想到的是三行,每一行一定要走到. 大概是这样一张图 每一行长度最少为1.即第一行(i -1) >= 1, ...

  3. 51nod 1624 取余最长路

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1624 题意: 思路:因为一共只有3行,所以只需要确定第一行和第二行的转折 ...

  4. ZZNU-oj-2141:2333--【O(N)求一个数字串能整除3的连续子串的个数,前缀和数组+对3取余组合数找规律】

    2141: 2333 题目描述 “别人总说我瓜,其实我一点也不瓜,大多数时候我都机智的一批“ 宝儿姐考察你一道很简单的题目.给你一个数字串,你能判断有多少个连续子串能整除3吗? 输入 多实例输入,以E ...

  5. #leetcode刷题之路14-最长公共前缀

    编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow" ...

  6. poj 3349:Snowflake Snow Snowflakes(哈希查找,求和取余法+拉链法)

    Snowflake Snow Snowflakes Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 30529   Accep ...

  7. 【HDU3721】枚举+最长路

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3721 题意:给你一颗n个节点n-1条边的树,每条边都有一个权值,现在让你任意移动一条边然后把这条边连接 ...

  8. lintcode :最长公共前缀

    题目 最长公共前缀 给k个字符串,求出他们的最长公共前缀(LCP) 样例 在 "ABCD" "ABEF" 和 "ACEF" 中,  LCP ...

  9. 高效求幂取余 算法,复杂度 log(n)

    做TopCoder SRM 576 D2 L3 题目时,程序有个地方需要对一个数大量求幂并取余,导致程序运行时间很长,看了Editoral之后,发现一个超级高效的求幂并取余的算法,之前做System ...

随机推荐

  1. 【洛谷 P4166】 [SCOI2007]最大土地面积(凸包,旋转卡壳)

    题目链接 又调了我两个多小时巨亏 直接\(O(n^4)\)枚举4个点显然不行. 数据范围提示我们需要一个\(O(n^2)\)的算法. 于是\(O(n^2)\)枚举对角线,然后在这两个点两边各找一个点使 ...

  2. 读书笔记 ~ Python黑帽子 黑客与渗透测试编程之道

    Python黑帽子  黑客与渗透测试编程之道   <<< 持续更新中>>> 第一章: 设置python 环境 1.python软件包管理工具安装 root@star ...

  3. three.js_camera相机

    https://blog.csdn.net/yangnianbing110/article/details/51275927 文章地址

  4. 基于bootstrap物资管理系统后台模板——后台

    链接:http://pan.baidu.com/s/1geKwVMN 密码:0utl

  5. 安装JDK环境变量的配置

    设置环境变量 在java中需要设置三个环境变量(1.5之后不用再设置classpath了,但是个人强烈建议继续设置以保证向下兼容问题) JDK安装完成之后我们用来设置环境变量:右击”我的电脑“,选择” ...

  6. Lucene7.2.1系列(三)查询及高亮

    系列文章: Lucene系列(一)快速入门 Lucene系列(二)luke使用及索引文档的基本操作 Lucene系列(三)查询及高亮 一 准备 创建项目并添加Maven依赖 <dependenc ...

  7. 巅峰极客第二场CTF部分writeup

    word-MISC 微信回答问题+word字体里. sqli-WEB 注册个admin空格即可,长字符截断. 晚上把后续的写出来.现在睡觉

  8. webgote的例子(3)Sql注入(SearchPOST)

    Sql注入(Search/POST) (本章内容):post的方式进行注入 今天来讲一下sql注入的另一个例子(post) 上一个用的是get请求的方法将我们的参数传到服务器进行执行 上图中的标红是需 ...

  9. docker安装总结 linux红帽系列

    由于Docker限制分为两个版本CE和EE,所以之前yum里面的docker是老版本,需要先进行卸载,现在的包名叫做docker-ce yum remove docker docker-common ...

  10. option和 usb-serial驱动基本区别

    option.c This driver exists because the "normal" serial driver doesn't work too well   wit ...