[BZOJ3751][NOIP2014] 解方程
Description
已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0
Input
Output
第一行输出方程在[1,m]内的整数解的个数。
Sample Input
2
-3
1
Sample Output
1
2
HINT
对于100%的数据,0<n≤100,|ai|≤1010000,an≠0,m≤1000000。
题解:
到现在还是不怎么清楚正解到底是什么,大多数人应该都是选择了取模吧。但是这个明显是一种很不稳定的做法,很难保证复杂度和正确性两者兼得,也许事后可以AC,但是考试的时候谁能有足够的信心保证自己写对了呢?
因为a数组的值极其之大,而m相对来说要小得多,所以可以考虑把结果取模,其实就像之前提到的字符串Hash一样,这是无法保证完美的正确性的,但是出现冲突的概率也是极小。这取决于你所取的模及其大小。
也许最开始可以想到的就是取一个9位数的大模,这样是可以得70分的,也是相对稳妥的一种方法,时间复杂度为O(m * len),len表示a[i]的位数。如何减小复杂度?通过平时数学知识的了解,我们知道,设当前所取的模为MOD,若x = i时满足条件,则x + MOD必定也是满足的,所以我们可以把复杂度降到O(MOD + m)。
这又有一个问题了,之前所取的模比len还要大一些的,那就不得不缩小MOD了。但是如果MOD过小的话,正确性更加无法保证。如同字符串Hash一样,我们也可以选择取多个模,当且仅当在所有模数情况下满足,这个数才满足。然而由于数不能过大,要找到真正合适的又能够不超时的(这里不说官方数据,官方数据比较水,但是BZOJ上的数据到现在我还是过不了),很难。
所以在知道正解之前,我觉得这就是一道RP题啊。
代码(官方数据100分,BZOJ超时,Hash值来自hzwer)
---------------------------------------------------------------------------------------------------
#include <cstdio>
#include <cstring>
#define MAXN 105
#define MAXM 1000005
#ifdef WIN32
#define LLD "%I64d"
#else
#define LLD "%lld"
#endif
typedef long long ll;
const ll pri[5] = {11261, 19997, 22877, 21893, 14843};
ll max(ll a, ll b) { return a > b ? a : b; }
ll min(ll a, ll b) { return a < b ? a : b; }
ll n, m, a[5][MAXN], f[5][MAXM], l, ans[MAXM], x, tot;
char ch[MAXM];
ll calc(ll o, ll k)
{
ll x = 1, res = 0;
for (ll i = 0; i <= n; i++) (x *= o) %= pri[k], (res = x * a[k][i]) %= pri[k];
return res == 0;
}
int main()
{
freopen("3751.in", "r", stdin);
freopen("3751.out", "w", stdout);
scanf(LLD LLD, &n, &m);
for (ll i = 0; i <= n; i++)
{
scanf("%s", ch), l = strlen(ch), x = ch[0] == '-';
for (ll k = 0; k <= 4; k++)
for (ll j = x ? 1 : 0; j <= l - 1; j++)
(a[k][i] = (a[k][i] * 10) + ch[j] - '0') %= pri[k];
if (x) for (ll k = 0; k <= 4; k++) a[k][i] = pri[k] - a[k][i];
}
for (ll k = 0; k <= 4; k++)
for (ll i = 0; i < pri[k]; i++) f[k][i] = calc(i, k);
for (int i = 1; i <= m; i++)
{
int get = 1;
for (int k = 0; k <= 4; k++) if (!f[k][i % pri[k]]) { get = 0; break; }
if (get) ans[++tot] = i;
}
printf(LLD "\n", tot);
for (int i = 1; i <= tot; i++) printf(LLD "\n", ans[i]);
return 0;
}
---------------------------------------------------------------------------------------------------
[BZOJ3751][NOIP2014] 解方程的更多相关文章
- [BZOJ3751] [NOIP2014] 解方程 (数学)
Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...
- BZOJ3751 NOIP2014 解方程(Hash)
题目链接 BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...
- [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 【秦九韶算法】【字符串哈希】bzoj3751 [NOIP2014]解方程
在模意义下枚举m进行验证,多设置几个模数,而且小一些,利用f(x+p)%p=f(x)%p降低计算次数.UOJ AC,bzoj OLE. #include<cstdio> #include& ...
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- bzoj3751 / P2312 解方程
P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...
随机推荐
- BULK操作减少redo实验
建表: create table sm_histable ( sm_id ), sm_subid ), service_type ), orgton ), orgnpi ), destton ), d ...
- 汤姆大叔 javascript 系列 第20课 最后的5到javascript题目
博客链接:http://www.cnblogs.com/TomXu/archive/2012/02/10/2342098.html 原题: 大叔注:这些题目也是来自出这5个题目的人,当然如果你能答对4 ...
- ng-disabled 不起作用的解决办法
不知道这算不算 Angular.js 的一个bug.但搜索一番后找到了一个变通的解决办法. 业务需求是这样的, 按钮被点击一次之后就设置为禁用状态, 以阻止多次无效的点击.但现在很多框架都用 < ...
- Redis-Cluster实战--5.使用redis-cli安装
Redis-Cluster实战--.使用redis-cli安装 博客分类: redis 缓存 redis-cluster redisCluster指派槽cluster-infomeetslots 转载 ...
- CGAffineTransform
这个是CoreGraphics框架中的CGAffineTransform类,可用于设定UIView的transform属性.控制视图的缩放.旋转和平移操作.另称仿射变换矩阵. Quartz转换实现原理 ...
- 卷积神经网络_(4)_caffe简介
这里大致说一下caffe.caffe是伯里克利大学的贾杨清教授写的一个深度学习框架,使用C++编写的,但同时也提供python和matlab接口:组成部分主要有: (1)Blob:用来存储数据和梯度: ...
- VC++ 设置软件开机自启动的方法
0 概述 软件开机自启动是比较常用的做法,设置方法也有好几种. 1 使用者模式 在"开始菜单"的所有程序中有个"启动"文件夹,可以将需要设置为开机启动的应用 ...
- 【JavaScript】--重点解析之跨域请求
JSON JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. JSON是用字符串来表示Javascript对象,例如可以在django中发送一个JSON格式 ...
- 采用cocos2d-x lua 制作数字滚动效果样例
require "Cocos2d"require "Cocos2dConstants"local testscene = class("testsce ...
- APP产品交互设计分析总结(不断更新中...)
1.首页中的最下方的TAB和中部的TAB的区别 最下面的tab按钮应该是核心级模块级的大功能入口 中间的按钮应该是次核心级页面级的小功能入口 2.对于编辑是在单页内实现好还是跳转到新页面实现好 内容比 ...