Ant Counting
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6829   Accepted: 2514

Description

Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants!

Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.

How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed?

While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were:

3 sets with 1 ant: {1} {2} {3} 
5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3} 
5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3} 
3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3} 
1 set with 5 ants: {1,1,2,2,3}

Your job is to count the number of possible sets of ants given the data above.

Input

* Line 1: 4 space-separated integers: T, A, S, and B

* Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive

Output

* Line 1: The number of sets of size S..B (inclusive) that can be created. A set like {1,2} is the same as the set {2,1} and should not be double-counted. Print only the LAST SIX DIGITS of this number, with no leading zeroes or spaces.

Sample Input

3 5 2 3
1
2
2
1
3

Sample Output

10

Hint

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or size 3 can be made?

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

Source

 
        给出T种元素,每个元素个数为tot[i],询问从所有元素中挑出k个组成的不同集合数目sum[k],k€[S,B] ,ans=SUM{sum[k] | S<=k<=B }
 
f[i][j]表示从前i种元素中挑出j个的方案个数,f[i][j]=SUM{f[i-1][k] | j-tot[i]<=k<=j},注意到这个方程可以用前缀和优化掉一个A,注意判断j和tot[i]的关系。

 #include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define LL long long
const LL MOD=;
LL f[][+];
int tot[];
int main()
{
int T,A,S,B;
int i,j,k,n,m;
while(cin>>T>>A>>S>>B){
memset(tot,,sizeof(tot));
for(i=;i<=A;++i){
scanf("%d",&n);
tot[n]++;
}
int cur=;
LL ans=;
f[cur][]=;
for(i=;i<=A;++i) f[cur][i]=; for(i=;i<=T;++i){
cur^=;
f[cur][]=;
for(j=;j<=A;++j){
int tt=j-tot[i]-;
if(j<=tot[i]){
f[cur][j]=(f[cur][j-]+f[cur^][j])%MOD;
}
else{
f[cur][j]=(f[cur][j-]+f[cur^][j]-f[cur^][j--tot[i]]+MOD)%MOD;
}
}
}
ans=(f[cur][B]-f[cur][S-]+MOD)%MOD;
cout<<ans<<endl;
}
return ;
}

poj-3046-dp的更多相关文章

  1. poj 3046 Ant Counting (DP多重背包变形)

    题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...

  2. DP:Ant Counting(POJ 3046)

    数蚂蚁 题目大意:一只牛想数蚂蚁,蚂蚁分成很多组,每个组里面有很多只蚂蚁,现在问你有多少种组合方式 (说白了就是问1,1,1,...,2...,3...,4...)这些东西有多少种排列组合方式 这一道 ...

  3. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  4. POJ 3046 Ant Counting DP

    大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...

  5. poj 3046 Ant Counting——多重集合的背包

    题目:http://poj.org/problem?id=3046 多重集合的背包问题. 1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ...

  6. hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)

    题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...

  7. poj 1080 dp如同LCS问题

    题目链接:http://poj.org/problem?id=1080 #include<cstdio> #include<cstring> #include<algor ...

  8. poj 1609 dp

    题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...

  9. POJ 1037 DP

    题目链接: http://poj.org/problem?id=1037 分析: 很有分量的一道DP题!!! (参考于:http://blog.csdn.net/sj13051180/article/ ...

  10. Jury Compromise POJ - 1015 dp (标答有误)背包思想

    题意:从 n个人里面找到m个人  每个人有两个值  d   p     满足在abs(sum(d)-sum(p)) 最小的前提下sum(d)+sum(p)最大 思路:dp[i][j]  i个人中  和 ...

随机推荐

  1. STL: fill,fill_n,generate,generate_n

    fill Assigns the same new value to every element in a specified range. template<class ForwardIter ...

  2. CentOS忘记用户名或者密码解决办法

    方法一:如果用户名和密码都忘记了,可以用以下这个方法找回:(和第二种大步骤差不多,需注意3,4步) 1. 在出现grub画面时,用上下键选中你平时启动linux的那一项,然后按e键 2. 再次用上下键 ...

  3. python全栈开发从入门到放弃之模块和包

    一 模块 1 什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编 ...

  4. Django框架_URLconf、Views、template、ORM

    目录: 一.Django-MTV MTV模型 Django基本命令 视图层之路由配置系统(views) 视图层之视图函数(views) 模板层(template) 二.Django-model基础 O ...

  5. TabLayout与ViewPager同步后Tab的标题不显示

    一.概述 1.1 问题描述 TabLayout+ViewPager后,TabLayout的TabItem不显示的问题: 1.2 截图 二.结论 mTabs.setupWithViewPager(mVi ...

  6. 论文笔记:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

    ICML, 2015 S. Ioffe and C. Szegedy 解决什么问题(What) 分布不一致导致训练慢:每一层的分布会受到前层的影响,当前层分布发生变化时,后层网络需要去适应这个分布,训 ...

  7. pxe基于虚拟机的自启动

    环境系统:centos6.4 min版 虚拟机实现:提供的服务器ip为192.168.0.105,桥接 安装dhcp服务: yum -y install dhcp 配置dhcp服务,使能够成功启动: ...

  8. 如果css足够强大了,你还会用编程的方式实现去实现css已有的功能吗?

    现在css3 都出来的,但是其实我由于一些原因,有些css2中都能支持的样式,我都没有使用过.我感觉我真的有必要静下心来,去看看那些东西,看看哪些以前都被忽视掉的. 今天我主要来讲三个对于我们编程经常 ...

  9. python-作用域和装饰器

    Python 作用域 学习的时机: 基本的数据类型 Python的运算 数字运算 + - * / // ** 逻辑运算 And or not 比较运算 > < == >= <= ...

  10. nginx搭建mp4流服务器

    流媒体服务器 流媒体指以流方式在网络中传送音频.视频和多媒体文件的媒体形式.相对于下载后观看的网络播放形式而言,流媒体的典型特征是把连续的音频和视频信息压缩后放到网络服务器上,用户边下载边观看,而不必 ...