《SIFT原理与源码分析》系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html

由前一篇《方向赋值》,为找到的关键点即SIFT特征点赋了值,包含位置、尺度和方向的信息。接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点。用来作为目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化、3D视点变化等。

SIFT描述子h(x,y,θ)是对关键点附近邻域内高斯图像梯度统计的结果,是一个三维矩阵,但通常用一个矢量来表示。矢量通过对三维矩阵按一定规律排列得到。

描述子采样区域

特征描述子与关键点所在尺度有关,因此对梯度的求取应在特征点对应的高斯图像上进行。将关键点附近划分成d×d个子区域,每个子区域尺寸为mσ个像元(d=4,m=3,σ为尺特征点的尺度值)。考虑到实际计算时需要双线性插值,故计算的图像区域为mσ(d+1),再考虑旋转,则实际计算的图像区域为,如下图所示:

源码

    Point pt(cvRound(ptf.x), cvRound(ptf.y));
//计算余弦,正弦,CV_PI/180:将角度值转化为幅度值
float cos_t = cosf(ori*(float)(CV_PI/));
float sin_t = sinf(ori*(float)(CV_PI/));
float bins_per_rad = n / .f;
float exp_scale = -.f/(d * d * 0.5f); //d:SIFT_DESCR_WIDTH 4
float hist_width = SIFT_DESCR_SCL_FCTR * scl; // SIFT_DESCR_SCL_FCTR: 3
// scl: size*0.5f
// 计算图像区域半径mσ(d+1)/2*sqrt(2)
// 1.4142135623730951f 为根号2
int radius = cvRound(hist_width * 1.4142135623730951f * (d + ) * 0.5f);
cos_t /= hist_width;
sin_t /= hist_width;

区域坐标轴旋转

为了保证特征矢量具有旋转不变性,要以特征点为中心,在附近邻域内旋转θ角,即旋转为特征点的方向。
旋转后区域内采样点新的坐标为:

源码

//计算采样区域点坐标旋转
for( i = -radius, k = ; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
{
/*
Calculate sample's histogram array coords rotated relative to ori.
Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e.
r_rot = 1.5) have full weight placed in row 1 after interpolation.
*/
float c_rot = j * cos_t - i * sin_t;
float r_rot = j * sin_t + i * cos_t;
float rbin = r_rot + d/ - 0.5f;
float cbin = c_rot + d/ - 0.5f;
int r = pt.y + i, c = pt.x + j; if( rbin > - && rbin < d && cbin > - && cbin < d &&
r > && r < rows - && c > && c < cols - )
{
float dx = (float)(img.at<short>(r, c+) - img.at<short>(r, c-));
float dy = (float)(img.at<short>(r-, c) - img.at<short>(r+, c));
X[k] = dx; Y[k] = dy; RBin[k] = rbin; CBin[k] = cbin;
W[k] = (c_rot * c_rot + r_rot * r_rot)*exp_scale;
k++;
}
}

计算采样区域梯度直方图

将旋转后区域划分为d×d个子区域(每个区域间隔为mσ像元),在子区域内计算8个方向的梯度直方图,绘制每个方向梯度方向的累加值,形成一个种子点。
与求主方向不同的是,此时,每个子区域梯度方向直方图将0°~360°划分为8个方向区间,每个区间为45°。即每个种子点有8个方向区间的梯度强度信息。由于存在d×d,即4×4个子区域,所以最终共有4×4×8=128个数据,形成128维SIFT特征矢量。
对特征矢量需要加权处理,加权采用mσd/2的标准高斯函数。为了除去光照变化影响,还有一步归一化处理。

源码

//计算梯度直方图
for( k = ; k < len; k++ )
{
float rbin = RBin[k], cbin = CBin[k];
float obin = (Ori[k] - ori)*bins_per_rad;
float mag = Mag[k]*W[k]; int r0 = cvFloor( rbin );
int c0 = cvFloor( cbin );
int o0 = cvFloor( obin );
rbin -= r0;
cbin -= c0;
obin -= o0; //n为SIFT_DESCR_HIST_BINS:8,即将360°分为8个区间
if( o0 < )
o0 += n;
if( o0 >= n )
o0 -= n; // histogram update using tri-linear interpolation
// 双线性插值
float v_r1 = mag*rbin, v_r0 = mag - v_r1;
float v_rc11 = v_r1*cbin, v_rc10 = v_r1 - v_rc11;
float v_rc01 = v_r0*cbin, v_rc00 = v_r0 - v_rc01;
float v_rco111 = v_rc11*obin, v_rco110 = v_rc11 - v_rco111;
float v_rco101 = v_rc10*obin, v_rco100 = v_rc10 - v_rco101;
float v_rco011 = v_rc01*obin, v_rco010 = v_rc01 - v_rco011;
float v_rco001 = v_rc00*obin, v_rco000 = v_rc00 - v_rco001; int idx = ((r0+)*(d+) + c0+)*(n+) + o0;
hist[idx] += v_rco000;
hist[idx+] += v_rco001;
hist[idx+(n+)] += v_rco010;
hist[idx+(n+)] += v_rco011;
hist[idx+(d+)*(n+)] += v_rco100;
hist[idx+(d+)*(n+)+] += v_rco101;
hist[idx+(d+)*(n+)] += v_rco110;
hist[idx+(d+)*(n+)+] += v_rco111;
}

关键点描述源码

// SIFT关键点特征描述
// SIFT描述子是关键点领域高斯图像提取统计结果的一种表示
static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float scl,
int d, int n, float* dst ) {
Point pt(cvRound(ptf.x), cvRound(ptf.y));
//计算余弦,正弦,CV_PI/180:将角度值转化为幅度值
float cos_t = cosf(ori*(float)(CV_PI/));
float sin_t = sinf(ori*(float)(CV_PI/));
float bins_per_rad = n / .f;
float exp_scale = -.f/(d * d * 0.5f); //d:SIFT_DESCR_WIDTH 4
float hist_width = SIFT_DESCR_SCL_FCTR * scl; // SIFT_DESCR_SCL_FCTR: 3
// scl: size*0.5f
// 计算图像区域半径mσ(d+1)/2*sqrt(2)
// 1.4142135623730951f 为根号2
int radius = cvRound(hist_width * 1.4142135623730951f * (d + ) * 0.5f);
cos_t /= hist_width;
sin_t /= hist_width; int i, j, k, len = (radius*+)*(radius*+), histlen = (d+)*(d+)*(n+);
int rows = img.rows, cols = img.cols; AutoBuffer<float> buf(len* + histlen);
float *X = buf, *Y = X + len, *Mag = Y, *Ori = Mag + len, *W = Ori + len;
float *RBin = W + len, *CBin = RBin + len, *hist = CBin + len; //初始化直方图
for( i = ; i < d+; i++ )
{
for( j = ; j < d+; j++ )
for( k = ; k < n+; k++ )
hist[(i*(d+) + j)*(n+) + k] = .;
} //计算采样区域点坐标旋转
for( i = -radius, k = ; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
{
/*
Calculate sample's histogram array coords rotated relative to ori.
Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e.
r_rot = 1.5) have full weight placed in row 1 after interpolation.
*/
float c_rot = j * cos_t - i * sin_t;
float r_rot = j * sin_t + i * cos_t;
float rbin = r_rot + d/ - 0.5f;
float cbin = c_rot + d/ - 0.5f;
int r = pt.y + i, c = pt.x + j; if( rbin > - && rbin < d && cbin > - && cbin < d &&
r > && r < rows - && c > && c < cols - )
{
float dx = (float)(img.at<short>(r, c+) - img.at<short>(r, c-));
float dy = (float)(img.at<short>(r-, c) - img.at<short>(r+, c));
X[k] = dx; Y[k] = dy; RBin[k] = rbin; CBin[k] = cbin;
W[k] = (c_rot * c_rot + r_rot * r_rot)*exp_scale;
k++;
}
} len = k;
fastAtan2(Y, X, Ori, len, true);
magnitude(X, Y, Mag, len);
exp(W, W, len); //计算梯度直方图
for( k = ; k < len; k++ )
{
float rbin = RBin[k], cbin = CBin[k];
float obin = (Ori[k] - ori)*bins_per_rad;
float mag = Mag[k]*W[k]; int r0 = cvFloor( rbin );
int c0 = cvFloor( cbin );
int o0 = cvFloor( obin );
rbin -= r0;
cbin -= c0;
obin -= o0; //n为SIFT_DESCR_HIST_BINS:8,即将360°分为8个区间
if( o0 < )
o0 += n;
if( o0 >= n )
o0 -= n; // histogram update using tri-linear interpolation
// 双线性插值
float v_r1 = mag*rbin, v_r0 = mag - v_r1;
float v_rc11 = v_r1*cbin, v_rc10 = v_r1 - v_rc11;
float v_rc01 = v_r0*cbin, v_rc00 = v_r0 - v_rc01;
float v_rco111 = v_rc11*obin, v_rco110 = v_rc11 - v_rco111;
float v_rco101 = v_rc10*obin, v_rco100 = v_rc10 - v_rco101;
float v_rco011 = v_rc01*obin, v_rco010 = v_rc01 - v_rco011;
float v_rco001 = v_rc00*obin, v_rco000 = v_rc00 - v_rco001; int idx = ((r0+)*(d+) + c0+)*(n+) + o0;
hist[idx] += v_rco000;
hist[idx+] += v_rco001;
hist[idx+(n+)] += v_rco010;
hist[idx+(n+)] += v_rco011;
hist[idx+(d+)*(n+)] += v_rco100;
hist[idx+(d+)*(n+)+] += v_rco101;
hist[idx+(d+)*(n+)] += v_rco110;
hist[idx+(d+)*(n+)+] += v_rco111;
} // finalize histogram, since the orientation histograms are circular
// 最后确定直方图,目标方向直方图是圆的
for( i = ; i < d; i++ )
for( j = ; j < d; j++ )
{
int idx = ((i+)*(d+) + (j+))*(n+);
hist[idx] += hist[idx+n];
hist[idx+] += hist[idx+n+];
for( k = ; k < n; k++ )
dst[(i*d + j)*n + k] = hist[idx+k];
}
// copy histogram to the descriptor,
// apply hysteresis thresholding
// and scale the result, so that it can be easily converted
// to byte array
float nrm2 = ;
len = d*d*n;
for( k = ; k < len; k++ )
nrm2 += dst[k]*dst[k];
float thr = std::sqrt(nrm2)*SIFT_DESCR_MAG_THR;
for( i = , nrm2 = ; i < k; i++ )
{
float val = std::min(dst[i], thr);
dst[i] = val;
nrm2 += val*val;
}
nrm2 = SIFT_INT_DESCR_FCTR/std::max(std::sqrt(nrm2), FLT_EPSILON);
for( k = ; k < len; k++ )
{
dst[k] = saturate_cast<uchar>(dst[k]*nrm2);
}
}

至此SIFT描述子生成,SIFT算法也基本完成了~参见《SIFT原理与源码分析

【OpenCV】SIFT原理与源码分析:关键点描述的更多相关文章

  1. 【OpenCV】SIFT原理与源码分析:关键点搜索与定位

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了 ...

  2. OpenCV SIFT原理与源码分析

    http://blog.csdn.net/xiaowei_cqu/article/details/8069548 SIFT简介 Scale Invariant Feature Transform,尺度 ...

  3. 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

    原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...

  4. 【OpenCV】SIFT原理与源码分析:方向赋值

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<关键点搜索与定位>,我们已经找到 ...

  5. 【OpenCV】SIFT原理与源码分析

    SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition f ...

  6. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  7. ConcurrentHashMap实现原理及源码分析

    ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对Ha ...

  8. HashMap和ConcurrentHashMap实现原理及源码分析

    HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...

  9. (转)ReentrantLock实现原理及源码分析

    背景:ReetrantLock底层是基于AQS实现的(CAS+CHL),有公平和非公平两种区别. 这种底层机制,很有必要通过跟踪源码来进行分析. 参考 ReentrantLock实现原理及源码分析 源 ...

随机推荐

  1. HIVE简介及安装

    一.简介 百度百科HIVE定义: hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运 ...

  2. mysql 无法启动,错误1067,进程意外终止

    在做项目启动mysql数据库时,经常出现 这个错误,今天总结一下 //查看了网上很多的方法,都不适用,但或许对你适用.ps:网上只提供了怎么解决这个问题,但是没有将怎么去发现问题,对症下药才是王道.而 ...

  3. python-redis集合模式

    无序集合SADD set集合是直接去重的,只会输出 xiao hehe sadd  names3  xiao xiao hehe  hehe 获取集合 names3的所有值,集合不能用切片形式获取值, ...

  4. Codeforces Round #553 (Div. 2) C

    C. Problem for Nazar time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. mysql 转换13位数字毫秒时间

    MySQL毫秒值和日期转换,MYSQL内置函数FROM_UNIXTIME: select FROM_UNIXTIME(t.createDate/1000,'%Y-%m-%d %h:%i:%s') as ...

  6. 遗传算法框架GAFT优化小记

    前言 前段时间一直在用自己写的遗传算法框架测试算法在优化力场参数的效果,但是跑起来效率很慢,因为适应度函数需要调用多次力场程序计算能量,但是还是比我预想中的慢我也没有及时对程序进行profiling和 ...

  7. Beta阶段第二次网络会议

    Beta阶段第二次网络会议 第一次会议问题解决情况 画面问题已经解决,游戏提示信息已加入完成 不同情况下背景已加入完成,但细节部分仍需要进行调整 科技树添加完成,权限修改完成,还存在部分细节调整 AI ...

  8. Junit4 单元测试框架的常用方法介绍

    Junit 介绍: Junit是一套框架(用于JAVA语言),由 Erich Gamma 和 Kent Beck 编写的一个回归测试框架(regression testing framework),即 ...

  9. 团队Alpha冲刺(十)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...

  10. linshi12

    #include<iostream> using namespace std; int main(){ int a[50]; a[1]=5; int i; for(i=2;;i++){ a ...