1042: [HAOI2008]硬币购物

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1811  Solved: 1057
[Submit][Status][Discuss]

Description

  硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。

Input

  第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

Output

  每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4
27

HINT

Source

Solution

容斥这东西,说是会了,但还不是很会用..

最暴力的就是跑完全背包啊,很明显不行,所以考虑容斥

先用完全背包做出方案数,然后容斥一下,也就是减去不满足的方案

最终方案=总方案(无限制的方案)-1种硬币超限方案+2种硬币超限方案-3种硬币超限方案+4种硬币超限方案

对于一个数,限制条件为$D[i]$那么超限至少为$D[i]+1$,所以这种方案数为$f[S-(D[i]+1)*C[i]]$,其余同理

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 100010
int C[],tot,D[],S; long long f[maxn],ans;
void Work(int s,int dep,int x,int t)
{
if (dep==) {if (t%) ans-=f[s]; else ans+=f[s]; return;}
Work(s,dep+,x+,t);
if (C[x]*(D[x]+)<=s) Work(s-C[x]*(D[x]+),dep+,x+,t+);
}
int main()
{
for (int i=; i<=; i++) C[i]=read(); tot=read();
f[]=;
for (int i=; i<=; i++)
for (int j=C[i]; j<=maxn; j++)
f[j]+=f[j-C[i]];
for (int i=; i<=tot; i++)
{
for (int j=; j<=; j++) D[j]=read(); S=read();
ans=; Work(S,,,); printf("%lld\n",ans);
}
return ;
}

【BZOJ-1042】硬币购物 容斥原理 + 完全背包的更多相关文章

  1. BZOJ 1042 硬币购物(完全背包+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d ...

  2. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  3. BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...

  4. [BZOJ]1042 硬币购物(HAOI2008)

    失踪OJ回归. 小C通过这道题mark一下容斥一类的问题. Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s ...

  5. BZOJ 1042 硬币购物(背包DP+容斥原理)

    可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE. 因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数. 我们不妨不考虑 ...

  6. BZOJ 1042 硬币购物

    先不考虑限制,那么有dp[i]表示i元钱的方案数. 然后考虑限制,发现可以容斥. 其实整个题就是两个容斥原理.感觉出的蛮好的. #include<iostream> #include< ...

  7. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  8. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  9. BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2924  Solved: 1802 [Submit][St ...

随机推荐

  1. AWS CLI 中使用S3存储

    登录 通过控制面板, 在S3管理器中创建一个新的bucket 所有AWS服务 -> 安全&身份 -> IAM -> 组, 创建一个新的组, 例如 "s3-user& ...

  2. git 解决fatal: Not a git repository

    我用git add file添加文件时出现这样错误: fatal: Not a git repository (or any of the parent directories): .git 提示说没 ...

  3. Cordova - 与iOS原生代码交互2(使用Swift开发Cordova的自定义插件)

    在前一篇文章中我介绍了如何通过 js 与原生代码进行交互(Cordova - 与iOS原生代码交互1(通过JS调用Swift方法)),当时是直接对Cordova生成的iOS工程项目进行编辑操作的(添加 ...

  4. [转]一篇很全面的freemarker教程

    copy自http://demojava.iteye.com/blog/800204 以下内容全部是网上收集: FreeMarker的模板文件并不比HTML页面复杂多少,FreeMarker模板文件主 ...

  5. XML Data Type Methods(一)

    XML Data Type Methods(一) /*XML Data Type Methods: 1.The query('XQuery') method retrieves(vt.检索,重新得到) ...

  6. Spring Security笔记:解决CsrfFilter与Rest服务Post方式的矛盾

    基于Spring Security+Spring MVC的web应用,为了防止跨站提交攻击,通常会配置csrf,即: <http ...> ... <csrf /> </ ...

  7. C#执行XSL转换

    xsl 可方便的将一种格式的xml,转换成另一种格式的xml,参考下面的代码: using System; using System.IO; using System.Text; using Syst ...

  8. HDU2444-The Accomodation of Students-判断是否为二分图+ISAP

    要先判断是不是二分图.用黑白染色法. 遇到已经染过的跟当前的颜色相同时就说明不是二分图,也即出现了奇环 /*---------------------------------------------- ...

  9. java 实现从15位~18位的身份证号码转换,校验中国大陆公民身份证、香港居民身份证、澳门身份证和台湾身份证。

    package xidian.sl.netcredit.util; /** * Copyright (C) 2009-2010 Yichuan, Fuchun All rights reserved. ...

  10. <实训|第十天>从底层解释一下U盘内存为什么变小的原因附数据恢复的基本原理

    [root@localhost~]#序言 我们平时不论是买一个U盘硬盘,或者自己在电脑上创建一个分区,大小总是比我们创建的要小一点,有些人会说,这个正常啊,是因为厂家规定的1M=1000k,真正的是1 ...