【BZOJ-1911】特别行动队 DP + 斜率优化
1911: [Apio2010]特别行动队
Time Limit: 4 Sec Memory Limit: 64 MB
Submit: 3478 Solved: 1586
[Submit][Status][Discuss]
Description

Input

Output

Sample Input
-1 10 -20
2 2 3 4
Sample Output
HINT
Source
Solution
题意非常明显,将n个数划分成多段区间,使得总价值最大,每段区间的价值为$powersum=\sum power[i],ans=a*powersum^2+b*powersum+c$
那么得出DP转移方程:$dp[i]=max(dp[j]+a*(pos[i]-pos[j])^2+b*(pos[i]-pos[j])+c)$
那么很显然不能AC,那么考虑优化一下时间
考虑斜率优化,对于转移到当前位置,最优解为$i$,如果满足任意$i<j$都有$i$更优那么就可以得到如下:
$(dp[j]-dp[i]+a*(pos[j]^2-pos[i]^2)+b*(pos[i]-pos[j]))/(2*a*(pos[j]-pos[i]))$那么维护一下即可
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 1000100
int n,a,b,c; int po[maxn]; long long pos[maxn],dp[maxn];
int que[maxn],l,r;
long long pf(long long x){return x*x;}
double slope(int i,int j)
{
double fz=dp[j]-dp[i]+a*(pf(pos[j])-pf(pos[i]))+b*(pos[i]-pos[j]);
double fm=(*a*(pos[j]-pos[i]));
return fz/fm;
}
int main()
{
n=read(); a=read(),b=read(),c=read();
for (int i=; i<=n; i++) po[i]=read(),pos[i]=pos[i-]+po[i];
for (int tmp,i=; i<=n; i++)
{
while (l<r && slope(que[l],que[l+])<pos[i]) l++;
tmp=que[l];
dp[i]=dp[tmp]+a*pf(pos[i]-pos[tmp])+b*(pos[i]-pos[tmp])+c;
while (l<r && slope(que[r-],que[r])>slope(que[r],i)) r--;
que[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}
斜率优化好TAT..
【BZOJ-1911】特别行动队 DP + 斜率优化的更多相关文章
- BZOJ 1911 特别行动队 (斜率优化)
$ BZOJ~1911~*~ $ 特别行动队: (斜率优化) $ solution: $ 感觉这道题目还是比较常规的,首先我们很容易想到DP,因为题目里面说了选出的人都是连续的,这意味着我们可以从前往 ...
- BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )
sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...
- BZOJ1911: [Apio2010]特别行动队(dp 斜率优化)
题意 题目链接 Sol 裸的斜率优化,注意推导过程中的符号问题. #include<bits/stdc++.h> #define Pair pair<int, int> #de ...
- bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3191 Solved: 1450[Submit][Statu ...
- 【BZOJ】1911: [Apio2010]特别行动队(斜率优化dp)
题目 传送门:QWQ 分析 用$ dp[i] $ 表示前 i 个人组成的战斗力之和 然后显然$ dp[i]=Max ( dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum ...
- BZOJ 1911 特别行动队(斜率优化DP)
应该可以看出这是个很normal的斜率优化式子.推出公式搞一搞即可. # include <cstdio> # include <cstring> # include < ...
- bzoj 1911: [Apio2010]特别行动队【斜率优化dp】
仔细想想好像没学过斜率优化.. 很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \) 然后考虑j的选取,如果选j优于选k,那么: ...
- 【斜率DP】BZOJ 1911:特别行动队
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3006 Solved: 1360[Submit][Statu ...
- 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)
dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...
随机推荐
- ListView实现原理
转载:http://blog.csdn.net/guolin_blog/article/details/44996879 在Android所有常用的原生控件当中,用法最复杂的应该就是ListView了 ...
- word里的代码格式,使之有底纹的效果
实现效果: 怎么才能在word里实现这样的显示? 如何设置word里的代码格式,使之有底纹的效果
- SQL Server数据库代码指令简介
这些是比较常用的命令操作,事先声明,这些命令是不区分大小写的,我按照我的课本来总结用法和知识点,无用的章节自动省略. 没有一点数据库知识基础的可以等我录制视频,不然可能看不懂,视频链接:http:// ...
- 详解javascript 存储
javascript用于存储的方式可谓是多种多样,善于应用‘存储’可以大大的提高网站的性能,博主结合日常开发常见需求做一下总结,希望对大家有用- 1.cookie 存储大小: 4kb左右,以20个 ...
- 一次由于开启 Safari 无痕浏览 引发的艰难“捉虫”事件
事件回顾 做了一个移动端的页面,测试的时候出现了一个诡异的 bug.别的浏览器都好好的,就 ios 的 Safari 浏览器页面停止了渲染,似乎是有一段 js 文件没有载入.但是奇怪的是,同一型号的 ...
- Toxy新手指南
Neuzilla出品 官方网站:http://toxy.codeplex.com QQ群:297128022 官方微信公众号: Toxy 是干嘛用的?它是.NET平台上的文件抽取框架,主要解决各种格式 ...
- 利用manifest文件对程序目录下的dll进行分类
1 背景 对于大部分的券商和机构投资者,只能通过有交易所交易系统接入资质的券商提供的柜台系统来进行现货交易.相对于期货市场,现货市场的柜台系统千差万别,接入协议有明文字符串.二进制数据和FIX协议等, ...
- PHP 页面跳转方法
1.php header()函数跳转 PHP的header()函数非常强大,其中在页面url跳转方面也调用简单,使用header()直接跳转到指定url页面,这时页面跳转是302重定向: $url = ...
- MATLAB中subplot的用法
写成subplot(m,n,p)或者subplot(mnp). subplot是将多个图画到一个平面上的工具.其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的, ...
- js中递归函数的使用介绍
所谓的递归函数就是在函数体内调用本函数.使用递归函数一定要注意,处理不当就会进入死循环.递归函数只有在特定的情况下使用 ,比如阶乘问题 递归函数是在一个函数通过名字调用自身的情况下构成的,如下所示: ...