开关问题
 

Description

有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

Input

输入第一行有一个数K,表示以下有K组测试数据。 
每组测试数据的格式如下: 
第一行 一个数N(0 < N < 29) 
第二行 N个0或者1的数,表示开始时N个开关状态。 
第三行 N个0或者1的数,表示操作结束后N个开关的状态。 
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。 

Output

如果有可行方法,输出总数,否则输出“Oh,it's impossible~!!” 不包括引号

Sample Input

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

Sample Output

4
Oh,it's impossible~!!

Hint

第一组数据的说明: 
一共以下四种方法: 
操作开关1 
操作开关2 
操作开关3 
操作开关1、2、3 (不记顺序) 
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e6+, inf = 2e9, mod = 1e6+; int a[][], n;
int gauss() {
int i,j;
for(i = , j = ; j < n && i < n; ++j) {
int k = i;
for(; k < n; ++k) if(a[k][j]) break;
if(a[k][j]) {
for(int u = ; u <= n; ++u) swap(a[k][u],a[i][u]);
for(int u = i + ; u < n; ++u) {
if(a[u][j]) for(int kk = ; kk <= n; ++kk)
a[u][kk] ^= a[i][kk];
}
++i;
}
}
for(j = i; j < n; ++j) {
if(a[j][n]) return -;
}
return 1LL << (n - i);
}
int main() {
int k;
scanf("%d",&k);
while(k--) {
memset(a,,sizeof(a));
scanf("%d",&n);
for(int i = ; i < n; ++i) scanf("%d",&a[i][n]);
for(int i = ; i < n; ++i) {
int x;
scanf("%d",&x);
a[i][n] ^= x;
a[i][i] = ;
}
int u,v;
while(scanf("%d%d",&u,&v) && u + v) {
a[v-][u-] = ;
}
int ans = gauss();
if(ans == -) puts("Oh,it's impossible~!!");else
printf("%d\n",ans);
}
return ;
}

POJ 1830 高斯消元的更多相关文章

  1. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  2. POJ SETI 高斯消元 + 费马小定理

    http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我 ...

  3. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  4. POJ 2065 高斯消元求解问题

    题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求 ...

  5. poj 2065 高斯消元(取模的方程组)

    SETI Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1735   Accepted: 1085 Description ...

  6. POJ 1222 高斯消元更稳

    大致题意: 有5*6个灯,每个灯只有亮和灭两种状态,分别用1和0表示.按下一盏灯的按钮,这盏灯包括它周围的四盏灯都会改变状态,0变成1,1变成0.现在给出5*6的矩阵代表当前状态,求一个能全部使灯灭的 ...

  7. POJ 1681 高斯消元 枚举自由变元

    题目和poj1222差不多,但是解法有一定区别,1222只要求出任意一解,而本题需要求出最少翻转次数.所以需要枚举自由变元,变元数量为n,则枚举的次数为1<<n次 #include < ...

  8. POJ 1830 开关问题(高斯消元)题解

    思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...

  9. 【POJ】1830 开关问题(高斯消元)

    http://poj.org/problem?id=1830 高斯消元无解的条件:当存在非法的左式=0而右式不等于0的情况,即为非法.这个可以在消元后,对没有使用过的方程验证是否右式不等于0(此时因为 ...

随机推荐

  1. question2answer论坛框架分析及web开发思考

    2015年7月25日 17:31:42 星期六 一个专门做论坛的开源PHP框架, 有后台, 支持多语种 入口文件是框架根目录的index.php 他包含了/qa-include/qa-index.ph ...

  2. 整数划分问题-解法汇总(暂有DP-递归)

    整数划分问题是一个锻炼组合数学,递归以及动态规划很好的例子,虽然问题看似简单,但是其中玄机万千,有人转化成为背包问题,有人用生成函数解,有人以此作为企业面试题目,可见这种问题的认可度还是很高的. 整数 ...

  3. AFNetWorking支持解析html的方法

    在AFURLResponseSeriallzation.m的226行 手动添加@"text/html" 添加之前解锁文件

  4. Python 开发轻量级爬虫02

    Python 开发轻量级爬虫 (imooc总结02--爬虫简介) 爬虫简介 首先爬虫是什么?它是一段自动抓取互联网信息的程序. 什么意思呢? 互联网由各种各样的的网页组成,每一个网页都有对应的url, ...

  5. 【工具】 原版完美激活 Flash builder 4.7 【非破解激活】

    此方法原理在于激活 FlashBuilder 4.7 而不是破解(靠修改文件,或改变版本号),所以此破解更加稳定! FlashBuilder 4.7 下载地址: 32bit:http://trials ...

  6. 关于java中Double类型的运算精度问题

    标题     在Java中实现浮点数的精确计算    AYellow(原作) 修改    关键字     Java 浮点数 精确计算   问题的提出:如果我们编译运行下面这个程序会看到什么?publi ...

  7. Jquery网站下雪花的效果

    代码如下: <script type="text/javascript" src="jquery.min.js"></script> & ...

  8. 网站配置好了,在本地能登录系统,但是挂在IIS上就无法登录了,提示数据库连接错误

    我用的VS2010开发的网站,但是挂在本机的IIS上的时候就无法登录了,提示错误如下:

  9. Excel计算一列的和sum(A:A)

    在公式中输入=sum(A2:A6),计算的是A列2-6行的和 =sum(A:A)计算的是A列全部的和

  10. Python--常见问题解决方案

    1.如何支持中文,在第一行加上编码格式的支持: # coding=gbk +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...