开关问题
 

Description

有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

Input

输入第一行有一个数K,表示以下有K组测试数据。 
每组测试数据的格式如下: 
第一行 一个数N(0 < N < 29) 
第二行 N个0或者1的数,表示开始时N个开关状态。 
第三行 N个0或者1的数,表示操作结束后N个开关的状态。 
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。 

Output

如果有可行方法,输出总数,否则输出“Oh,it's impossible~!!” 不包括引号

Sample Input

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

Sample Output

4
Oh,it's impossible~!!

Hint

第一组数据的说明: 
一共以下四种方法: 
操作开关1 
操作开关2 
操作开关3 
操作开关1、2、3 (不记顺序) 
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e6+, inf = 2e9, mod = 1e6+; int a[][], n;
int gauss() {
int i,j;
for(i = , j = ; j < n && i < n; ++j) {
int k = i;
for(; k < n; ++k) if(a[k][j]) break;
if(a[k][j]) {
for(int u = ; u <= n; ++u) swap(a[k][u],a[i][u]);
for(int u = i + ; u < n; ++u) {
if(a[u][j]) for(int kk = ; kk <= n; ++kk)
a[u][kk] ^= a[i][kk];
}
++i;
}
}
for(j = i; j < n; ++j) {
if(a[j][n]) return -;
}
return 1LL << (n - i);
}
int main() {
int k;
scanf("%d",&k);
while(k--) {
memset(a,,sizeof(a));
scanf("%d",&n);
for(int i = ; i < n; ++i) scanf("%d",&a[i][n]);
for(int i = ; i < n; ++i) {
int x;
scanf("%d",&x);
a[i][n] ^= x;
a[i][i] = ;
}
int u,v;
while(scanf("%d%d",&u,&v) && u + v) {
a[v-][u-] = ;
}
int ans = gauss();
if(ans == -) puts("Oh,it's impossible~!!");else
printf("%d\n",ans);
}
return ;
}

POJ 1830 高斯消元的更多相关文章

  1. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  2. POJ SETI 高斯消元 + 费马小定理

    http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我 ...

  3. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  4. POJ 2065 高斯消元求解问题

    题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求 ...

  5. poj 2065 高斯消元(取模的方程组)

    SETI Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1735   Accepted: 1085 Description ...

  6. POJ 1222 高斯消元更稳

    大致题意: 有5*6个灯,每个灯只有亮和灭两种状态,分别用1和0表示.按下一盏灯的按钮,这盏灯包括它周围的四盏灯都会改变状态,0变成1,1变成0.现在给出5*6的矩阵代表当前状态,求一个能全部使灯灭的 ...

  7. POJ 1681 高斯消元 枚举自由变元

    题目和poj1222差不多,但是解法有一定区别,1222只要求出任意一解,而本题需要求出最少翻转次数.所以需要枚举自由变元,变元数量为n,则枚举的次数为1<<n次 #include < ...

  8. POJ 1830 开关问题(高斯消元)题解

    思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...

  9. 【POJ】1830 开关问题(高斯消元)

    http://poj.org/problem?id=1830 高斯消元无解的条件:当存在非法的左式=0而右式不等于0的情况,即为非法.这个可以在消元后,对没有使用过的方程验证是否右式不等于0(此时因为 ...

随机推荐

  1. IPC---信号量

    一.什么是信号量 信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程) 所拥有. 信号量的值为正的时候,说明它空闲.所测试的线程可以锁定而使用它.若为0,说明 它被占用,测试的线 ...

  2. 页面加载时执行JQ代码

    $(function () { //jq加载时执行的这里面是 $("#ss").append("<strong>这是新加的</strong>&qu ...

  3. centos vim配置高亮语法和格式化粘贴

    centos vim配置高亮语法和格式化粘贴 设置vim别名和高亮grep词语 echo -e "\nalias vi=vim\nalias grep='grep --color'\n&qu ...

  4. ACM/ICPC 之 判别MST唯一性-Kruskal解法(POJ1679)

    判别MST是否唯一的例题. POJ1679-The Unique MST 题意:给定图,求MST(最小生成树)是否唯一,唯一输出路径长,否则输出Not Unique! 题解:MST是否唯一取决于是否有 ...

  5. 18. javacript高级程序设计-JavaScript与XML

    1. JavaScript与XML IE采取了下列方式: l 通过ActiveX对象来支持处理XML,而相同的对象也可以用来构建桌面应用程序 l Windows携带了MSXML库,JavaScript ...

  6. JS里设定延时:js中SetInterval与setTimeout用法

     js中SetInterval与setTimeout用法 JS里设定延时: 使用SetInterval和设定延时函数setTimeout 很类似.setTimeout 运用在延迟一段时间,再进行某项操 ...

  7. 汉企PHP开班

    明天PHP正式开班,没什么大目标 ,在四个半月的时间吧基础知识掌握牢固,自信的面对企业.

  8. 手动关闭searchDisplayControlelr

    两行代码搞定 [searchBar endEditing:YES]; [searchDisplayControllersetActive:NO];

  9. objective-c数组笔记

    数组与可变数组 2015年6月14日 1.数组 数组的初始化方式 1.初始化一个空数组 NSArray *array = [[NSArray alloc] init];//不可变数组,数组内不可以添加 ...

  10. MFC CheckBox

    if ( BST_CHECKED == IsDlgButtonChecked( IDC_CHECK1 ) ){// 勾选}else{}