Description

我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件:

(1)它是从1到2n共2n个整数的一个排列{ai};

(2)所有的奇数项满足a1<a3<…<a2n-1,所有的偶数项满足a2<a4<…<a2n

(3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1<a2i

现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列。因为最后的答案可能很大,所以只要求输出答案 mod P的值。

Input

输入文件只包含用空格隔开的两个整数n和P。输入数据保证,50%的数据满足n≤1000,100%的数据满足n≤1000000且P≤1000000000。

Output

仅含一个整数,表示不同的长度为2n的有趣的数列个数mod P的值。

Sample Input

3 10

Sample Output

5
对应的5个有趣的数列分别为(1,2,3,4,5,6),(1,2,3,5,4,6),(1,3,2,4,5,6),(1,3,2,5,4,6),(1,4,2,5,3,6)。

Solution

卡特兰数。每次找最前面的奇数/偶数位置放,显然若偶数位不多于奇数位就是合法的,然后就成了卡特兰数。

我才不会说我一开始是先直接猜了个卡特兰数交上去的

Code

 #include<iostream>
#include<cstdio>
#define N (2000009)
#define LL long long
using namespace std; LL n,MOD,cnt,ans=,prime[N],Keg[N],d[N]; void Euler()
{
for (int i=; i<=*n; ++i)
{
if (!d[i]){d[i]=i; prime[++cnt]=i;}
for (int j=; j<=cnt && i*prime[j]<=*n; ++j)
{
d[i*prime[j]]=prime[j];
if (i%prime[j]==) break;
}
}
} void Divide(LL x,int opt)
{
while (x!=) Keg[d[x]]+=opt,x/=d[x];
} int main()
{
scanf("%lld%lld",&n,&MOD);
Euler();
for (int i=n+; i<=*n; ++i) Divide(i,);
for (int i=; i<=n; ++i) Divide(i,-);
Divide(n+,-);
for (int i=; i<=*n; ++i)
for (int j=; j<=Keg[i]; ++j)
ans=ans*i%MOD;
printf("%lld\n",ans);
}

BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)的更多相关文章

  1. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  2. [HNOI2009]有趣的数列 卡特兰数

    题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...

  3. bzoj1485: [HNOI2009]有趣的数列(Catalan数)

    1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2105  Solved: 1117[Submit][Stat ...

  4. [HNOI2009] 有趣的数列——卡特兰数与杨表

    [HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  5. bzoj 1485 [HNOI2009]有趣的数列 卡特兰数

    把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...

  6. 【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数

    这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因........... 你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里 ...

  7. BZOJ1485: [HNOI2009]有趣的数列(Catalan数,质因数分解求组合数)

    题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a ...

  8. luogu 3200 [HNOI2009]有趣的数列 卡特兰数+质因数分解

    打个表发现我们要求的就是卡特兰数的第 n 项,即 $\frac{C_{2n}^{n}}{n+1}$. 对组合数的阶乘展开,然后暴力分解质因子并开桶统计一下即可. code: #include < ...

  9. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

随机推荐

  1. js格式化文件大小,单位:Bytes、KB、MB、GB

    原文出自:https://blog.csdn.net/seesun2012 // 格式化文件大小 function renderSize(value){ if(null==value||value== ...

  2. WPF判断两个时间大小避免误差

    进行查询操作的时候,经常用到判断开始时间和结束时间大小的条件,由于从控件上获取的时间除了年月日时分秒,还包括毫秒.微秒等,导致直接判断时间大小的时候会产生一些误差,如下: 结果分析:年月日时分秒一致的 ...

  3. 三、spark简介

    一.简介 spark的官网:http://spark.apache.org/ spark解决了什么问题? 我们都知道hadoop,hadoop以一个非常容易使用的编程模型解决了大数据的两大难题: 1) ...

  4. 浅谈Android项目----JSON解析(4种解析技术详解)

    json简介 1.概念:json全称是javaScript object Notation,是一种并轻量级的数据交换格式. 2.特点: 1.本质就是具有特定格式的字符串 2.json完全独立于编程语言 ...

  5. netty源代码编译_mac os

    工作中会用到netty,有随手整理笔记的习惯,故学习整理下,之前看过了理论知识,接下来就看下源码了,先来编译下 个人 fork git:https://github.com/ending06/nett ...

  6. Shiro官方快速入门10min例子源码解析框架2-Session

    Shiro自身维护了一套session管理组件,它可以独立使用,并不单纯依赖WEB/Servlet/EJB容器等环境,使得它的session可以任何应用中使用. 2-Session)主要介绍在quic ...

  7. MySql的InnoDB存储引擎--索引

    索引分类: 1.聚集索引:索引顺序与物理顺序一致. MySql 的 InnoDB 中,主键索引就是聚集索引.好处是,进行搜索的时候,因为索引和物理顺序一致,所以找数据的时候更快. 2.非聚集索引:索引 ...

  8. MySQL:入门

    一.前言 MySQL :是用于管理数据的软件 MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性. 分为服务端和客户 ...

  9. BZOJ4589: Hard Nim(FWT 快速幂)

    题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...

  10. JavaWeb学习总结(十一):Session解决form表单重复提交

    在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用户可能会以为是自己没有提交表单,就会再点击提交按钮重复提交表单,我们在开发中必须防止表单重复提交. 一.表单重复提 ...