题意

题目链接

Sol

背板子背板子

#include<bits/stdc++.h>
using namespace std;
const int MAXN = (1 << 17) + 10, mod = 998244353, inv2 = 499122177;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, A[MAXN], B[MAXN], C[MAXN];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
void FWTor(int *a, int opt) {
for(int mid = 1; mid < N; mid <<= 1)
for(int R = mid << 1, j = 0; j < N; j += R)
for(int k = 0; k < mid; k++)
if(opt == 1) a[j + k + mid] = add(a[j + k], a[j + k + mid]);
else a[j + k + mid] = add(a[j + k + mid], -a[j + k]);
}
void FWTand(int *a, int opt) {
for(int mid = 1; mid < N; mid <<= 1)
for(int R = mid << 1, j = 0; j < N; j += R)
for(int k = 0; k < mid; k++)
if(opt == 1) a[j + k] = add(a[j + k], a[j + k + mid]);
else a[j + k] = add(a[j + k], -a[j + k + mid]);
}
void FWTxor(int *a, int opt) {
for(int mid = 1; mid < N; mid <<= 1)
for(int R = mid << 1, j = 0; j < N; j += R)
for(int k = 0; k < mid; k++) {
int x = a[j + k], y = a[j + k + mid];
if(opt == 1) a[j + k] = add(x, y), a[j + k + mid] = add(x, -y);
else a[j + k] = mul(add(x, y), inv2), a[j + k + mid] = mul(add(x, -y), inv2);
} }
int main() {
N = 1 << (read());
for(int i = 0; i < N; i++) A[i] = read();
for(int i = 0; i < N; i++) B[i] = read();
FWTor(A, 1); FWTor(B, 1);
for(int i = 0; i < N; i++) C[i] = mul(A[i], B[i]);
FWTor(C, -1); FWTor(A, -1); FWTor(B, -1);
for(int i = 0; i < N; i++) printf("%d ", C[i]); puts("");
FWTand(A, 1); FWTand(B, 1);
for(int i = 0; i < N; i++) C[i] = mul(A[i], B[i]);
FWTand(C, -1); FWTand(A, -1); FWTand(B, -1);
for(int i = 0; i < N; i++) printf("%d ", C[i]); puts("");
FWTxor(A, 1); FWTxor(B, 1);
for(int i = 0; i < N; i++) C[i] = mul(A[i], B[i]);
FWTxor(C, -1); FWTxor(A, -1); FWTxor(B, -1);
for(int i = 0; i < N; i++) printf("%d ", C[i]);
return 0;
}

洛谷P4717 【模板】快速沃尔什变换(FWT)的更多相关文章

  1. 洛谷.4717.[模板]快速沃尔什变换(FWT)

    题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype&g ...

  2. 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]

    FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...

  3. 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 快速沃尔什变换FWT

    快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\) ...

  6. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  7. 【学习笔鸡】快速沃尔什变换FWT

    [学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...

  8. FWT模板(洛谷P4717 【模板】快速沃尔什变换)(FWT)

    洛谷题目传送门 只是一个经过了蛇皮压行的模板... 总结?%%%yyb%%% #include<bits/stdc++.h> #define LL long long #define RG ...

  9. 关于快速沃尔什变换(FWT)的一点学习和思考

    最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...

  10. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

随机推荐

  1. linux之getenv putenv setenv和unsetenv详解

    1.getenv函数 头文件:#include<stdlib.h> 函数原型: char * getenv(const char* name); 函数说明:getenv()用来取得参数na ...

  2. 4、TensorFlow基础(二)常用API与变量作用域

    1.图.操作和张量 TensorFlow 的计算表现为数据流图,所以 tf.Graph 类中包含一系列表示计算的操作对象(tf.Operation),以及在操作之间流动的数据 — 张量对象(tf.Te ...

  3. docker入门之基础操作

    docker,我们可以把docker当作是简单的虚拟机.但这个虚拟机不像vm一样安装系统.所以我们又称之为容器.你可以理解成,容器就是虚拟机 docker与vm的对比 vmware:下载镜像——安装系 ...

  4. 【面向对象】【prototype&&__proto__&&实例化对象三者之间的关系】

    1.构造函数 a.什么是构造函数? 解释:通过关键字new 创建的函数叫做构造函数 作用:用来创建一个对象 废话少说直接上代码,首先我们还是创建一个构造函数人类 然后我们在创建两个实例,一个凡尘 一个 ...

  5. xenu简单介绍

    目录: 1.软件介绍 2.软件作用 3.功能特点 4.测试原理 5.使用说明 6.状态识别 工具下载链接:https://pan.baidu.com/s/1i4I9QK1 密码:lej7 1.软件介绍 ...

  6. Jexus进程守护工具jws.guard

    一个运行中的进程,难免会因为各种各样的原因无缘无故的宕掉(比如网站瞬间的负载过高.内存不足等),而Jexus宕掉的后果往往只有一个:对外提供服务的网站无法访问了.因此,我们需要最大限度的保障我们的网站 ...

  7. WCF系列教程之WCF服务配置

    文本参考自:http://www.cnblogs.com/wangweimutou/p/4365260.html 简介:WCF作为分布式开发的基础框架,在定义服务以及消费服务的客户端时可以通过配置文件 ...

  8. ok6410 android driver(2)

    I will paste and anlaysis a small character device driver in this paragraph. #include <linux/modu ...

  9. 如何自己编译生成hadoop的eclipse插件,如hadoop-eclipse-plugin-2.6.0.jar

    不多说,直接上干货! 如何自己编译生成Eclipse插件,如hadoop-eclipse-plugin-2.6.0.jar 一.相关软件的安装和配置 (一)JDK的安装和配置 Jdk 1.7*安装并配 ...

  10. SOA与微服务

    SOA 面向服务架构,它可以根据需求通过网络对松散耦合的粗粒度应用组件进行分布式部署.组合和使用.服务层是SOA的基础,可以直接被应用调用,从而有效控制系统中与软件代理交互的人为依赖性. SOA是一种 ...