洛谷P4717 【模板】快速沃尔什变换(FWT)
题意
Sol
背板子背板子
#include<bits/stdc++.h>
using namespace std;
const int MAXN = (1 << 17) + 10, mod = 998244353, inv2 = 499122177;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, A[MAXN], B[MAXN], C[MAXN];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
void FWTor(int *a, int opt) {
for(int mid = 1; mid < N; mid <<= 1)
for(int R = mid << 1, j = 0; j < N; j += R)
for(int k = 0; k < mid; k++)
if(opt == 1) a[j + k + mid] = add(a[j + k], a[j + k + mid]);
else a[j + k + mid] = add(a[j + k + mid], -a[j + k]);
}
void FWTand(int *a, int opt) {
for(int mid = 1; mid < N; mid <<= 1)
for(int R = mid << 1, j = 0; j < N; j += R)
for(int k = 0; k < mid; k++)
if(opt == 1) a[j + k] = add(a[j + k], a[j + k + mid]);
else a[j + k] = add(a[j + k], -a[j + k + mid]);
}
void FWTxor(int *a, int opt) {
for(int mid = 1; mid < N; mid <<= 1)
for(int R = mid << 1, j = 0; j < N; j += R)
for(int k = 0; k < mid; k++) {
int x = a[j + k], y = a[j + k + mid];
if(opt == 1) a[j + k] = add(x, y), a[j + k + mid] = add(x, -y);
else a[j + k] = mul(add(x, y), inv2), a[j + k + mid] = mul(add(x, -y), inv2);
}
}
int main() {
N = 1 << (read());
for(int i = 0; i < N; i++) A[i] = read();
for(int i = 0; i < N; i++) B[i] = read();
FWTor(A, 1); FWTor(B, 1);
for(int i = 0; i < N; i++) C[i] = mul(A[i], B[i]);
FWTor(C, -1); FWTor(A, -1); FWTor(B, -1);
for(int i = 0; i < N; i++) printf("%d ", C[i]); puts("");
FWTand(A, 1); FWTand(B, 1);
for(int i = 0; i < N; i++) C[i] = mul(A[i], B[i]);
FWTand(C, -1); FWTand(A, -1); FWTand(B, -1);
for(int i = 0; i < N; i++) printf("%d ", C[i]); puts("");
FWTxor(A, 1); FWTxor(B, 1);
for(int i = 0; i < N; i++) C[i] = mul(A[i], B[i]);
FWTxor(C, -1); FWTxor(A, -1); FWTxor(B, -1);
for(int i = 0; i < N; i++) printf("%d ", C[i]);
return 0;
}
洛谷P4717 【模板】快速沃尔什变换(FWT)的更多相关文章
- 洛谷.4717.[模板]快速沃尔什变换(FWT)
题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype&g ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 快速沃尔什变换FWT
快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\) ...
- 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...
- 【学习笔鸡】快速沃尔什变换FWT
[学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...
- FWT模板(洛谷P4717 【模板】快速沃尔什变换)(FWT)
洛谷题目传送门 只是一个经过了蛇皮压行的模板... 总结?%%%yyb%%% #include<bits/stdc++.h> #define LL long long #define RG ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
随机推荐
- 浅析Postgres中的并发控制(Concurrency Control)与事务特性(下)
上文我们讨论了PostgreSQL的MVCC相关的基础知识以及实现机制.关于PostgreSQL中的MVCC,我们只讲了元组可见性的问题,还剩下两个问题没讲.一个是"Lost Update& ...
- 代码 | 自适应大邻域搜索系列之(2) - ALNS算法主逻辑结构解析
00 前言 在上一篇推文中,教大家利用了ALNS的lib库求解了一个TSP问题作为实例.不知道你萌把代码跑起来了没有.那么,今天咱们再接再厉.跑完代码以后,小编再给大家深入讲解具体的代码内容.大家快去 ...
- Java_多线程2_线程池
线程池(pool): 线程池的作用: 1.节省资源,减少线程的数量和创建销毁线程的开销2.合理的管理线程的分配 线程池的创建: 1.newCachedThreadPool //优点:很灵活,弹性的线程 ...
- java中mongo的条件查询
@Override public Page<ProductInfo> findAll(Pageable pageable, ProductInfo productInfo) { //创建一 ...
- (C/C++) string / *char / int 基本轉換
網路上有許 string / *char / integer 基本轉換方式 string 與 *char 互相轉換的方法 /* string to *char */ string ssbuf1 = & ...
- Unity脚本生命周期与执行顺序
文章目录 脚本生命周期 MonoBehavior生命周期图 脚本执行顺序 自定义执行顺序 在Unity中,脚本可以理解为附加在游戏对象上的用于定义游戏对象行为的指令代码.必须绑定在游戏对象上才能开始它 ...
- Axis2 Web Service Development & Deployment Guide(Axis2使用)
主要内容: 记录关于Axis2的使用,通过WSDL文件生成Web service的客户端和服务器端的过程. 目录: Requirement(必备工具) Development - Client Gen ...
- 王亮:游戏AI探索之旅——从alphago到moba游戏
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由云加社区技术沙龙 发表于云+社区专栏 演讲嘉宾:王亮,腾讯AI高级研究员.2013年加入腾讯,从事大数据预测以及游戏AI研发工作.目前 ...
- ASP.NET MVC Core的ViewComponent
MVC Core新增了ViewComponent的概念,直接强行理解为视图组件,用于在页面上显示可重用的内容,这部分内容包括逻辑和展示内容,而且定义为组件那么其必定是可以独立存在并且是高度可重用的. ...
- 关于安装多个版本jdk之后java -version不正确的问题
问题描述: 今天突然想写一个socket通信的小应用,分别采用BIO.NIO.AIO的方式来实现,来复习前面看的关于TCP/UDP通信的知识.于是乎在原来安装了jdk1.6的机子上重新安装了jdk1. ...