2017江苏省省赛 Roads(全局最小割)
Roads
时间限制: 2 Sec 内存限制: 256 MB
提交: 6 解决: 2
[提交][状态][讨论版]
题目描述
Bobo, the mayor of ICPCCamp is going to remove some of the roads from the construction plan. He would like to know the minimum number roads to be removed to strictly increases the total cost.
Note that the total cost is considered as +∞ if no valid (n−1) roads exist after removing. It is also counted as "total cost strictly increases".
输入
The first line contains two integers n and m. The i-th of the following m lines contains ai,bi,ci.
2≤n≤50,n−1≤m≤n2,1≤ai,bi≤n,1≤ci≤109
Any two cities will be connected if all m roads are built.
The sum of n does not exceed 103.
输出
样例输入
3 3
1 2 1
1 3 2
2 3 3
3 4
1 2 1
1 2 1
1 3 2
1 3 3
3 4
1 2 1
1 2 1
1 3 2
1 3 2
4 6
1 2 1
1 3 1
1 4 1
2 3 1
2 4 1
3 4 1
样例输出
1
1
2
3
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define rep(i,l,r) for(int i=(l);i<=(r);++i)
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e2+;;
const int M = ;
const int mod = ;
const int mo=;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
ll qpow(int x,int qq){ll f=,p=x;while(qq){if(qq&)f=f*p%mod;p=1LL*p*p%mod;qq>>=;}}
int n,m;
int fa[N],wage[N],edg[N][N];
bool vis[N],in_set[N];
struct man{
int u,v,w;
bool operator <(const man &s)const {
return w<s.w;
}
}a[N*N];
int findFa(int x){
return fa[x]==x?x:fa[x]=findFa(fa[x]);
}
void unionFa(int x,int y){
if(findFa(x)==findFa(y))return ;
fa[findFa(x)]=findFa(y);
}
int search(int &s,int &t){
met(vis,false);
met(wage,);
int u,mincut,mx;
for(int i=;i<=n;i++){
u=mx=-;
for(int j=;j<=n;j++){
if(!in_set[j]&&!vis[j]&&wage[j]>mx)mx=wage[u=j];
}
if(u==-)return mincut;
vis[u]=true;
s=t,t=u;
mincut=mx;
for(int j=;j<=n;j++){
if(!in_set[j]&&!vis[j])wage[j]+=edg[u][j];
}
}
return mincut;
}
int stoer_wagner(){
int mincut=inf,s,t,ret;
for(int i=;i<n;i++){
ret=search(s,t);
in_set[t]=true;
if(ret!=&&ret<mincut)mincut=ret;//加ret!=0是为了求所有联通块的最小割
for(int j=;j<=n;j++)if(!in_set[j])edg[s][j]=(edg[j][s]+=edg[j][t]);
}
return mincut;
}
int main(){
while(~scanf("%d%d",&n,&m)){
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<m;i++){
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
}
sort(a,a+m);
int ans=inf,cnt=;
for(int i=;i<m;){
int now=i,w=a[i].w;
met(edg,);met(in_set,false);
for(;a[i].w==w&&i<m;i++){
if(findFa(a[i].u)!=findFa(a[i].v)){
edg[findFa(a[i].u)][findFa(a[i].v)]++;
edg[findFa(a[i].v)][findFa(a[i].u)]++;
}
}
ans=min(ans,stoer_wagner());
for(int i=now;a[i].w==w&&i<m;i++){
if(findFa(a[i].u)!=findFa(a[i].v)){
unionFa(a[i].u,a[i].v);
cnt++;
}
}
if(cnt>=n-)break;
}
printf("%d\n",ans);
}
return ;
}
2017江苏省省赛 Roads(全局最小割)的更多相关文章
- HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)
Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...
- HDU 3691 Nubulsa Expo(全局最小割)
Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...
- UVALive 5099 Nubulsa Expo 全局最小割问题
B - Nubulsa Expo Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit S ...
- ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)
题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...
- 全局最小割Stoer-Wagner算法
借鉴:http://blog.kongfy.com/2015/02/kargermincut/ 提到无向图的最小割问题,首先想到的就是Ford-Fulkerson算法解s-t最小割,通过Edmonds ...
- HDU 6081 度度熊的王国战略(全局最小割堆优化)
Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...
- HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)
Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...
- 全局最小割StoerWagner算法详解
前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...
- 求全局最小割(SW算法)
hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
随机推荐
- 51Nod 1004 n^n末尾数字 | 快速幂
#include "bits/stdc++.h" using namespace std; #define LL long long #define INF 0x3f3f3f3f3 ...
- Kubernetes: 集群网络配置 - flannel
参考: [ Kubernetes 权威指南 ] Kubernetes 集群搭建可以参考 [ Kubernetes : 多节点 k8s 集群实践 ] 在多个 Node 组成的 Kubernetes 集群 ...
- 有向有权图的最短路径算法--Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...
- rabbitmq之队列性能测试及优化方法(六)
前言 下面关注一下rabbitmq实际使用时的性能问题和怎么进行一些优化. 性能测试 针对每个需要生产/消费者与rabbitmq进行通讯的方法进行测试 测试环境 排除网络IO的干扰,采用生产者和消费者 ...
- ArcGIS Server配置端口
写在前面,GIS服务器必须连通到外网,基于某些情况,可能一个机组有多态服务器,担任不同的角色,有Web服务器.数据库服务器和GIS服务器等,但是可能购买时只有一个外网IP,这样是不行的.JS脚本运行在 ...
- 海量文件查重SimHash和Minhash
SimHash 事实上,传统比较两个文本相似性的方法,大多是将文本分词之后,转化为特征向量距离的度量,比如常见的欧氏距离.海明距离或者余弦角度等等.两两比较固然能很好地适应,但这种方法的一个最大的缺点 ...
- 解决Ubuntu的错误提示
如果你是一个Ubuntu用户,也许偶尔甚至经常,遇到这样一个错误提示“System Program problem detected”. Ubuntu有一个内建的实用程序叫做Apport, 当一个程序 ...
- 使用 Visual Studio 部署 .NET Core 应用 ——ASP.NET Core 发布的具体操作
ASP.NET Core 发布的具体操作 下面使用C# 编写的ASP.NET Core Web项目示例说明发布的全过程. 1.创建项目 选择“文件” > “新建” > “项目”. 在“添加 ...
- maven新建web项目提示The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path
maven新建web项目提示The superclass "javax.servlet.http.HttpServlet" was not found on the Java Bu ...
- redis之(五)redis的散列类型的命令
[一]赋值与取值 -->命令:HSET key field value -->往某个key的某个属性设置值 -->命令:HGET key field --> 获取某个k ...