我一生之敌是状压

本文发表于

题面

给一个 \(n\) 点 \(m\) 边无向图 \(G=(V,E)\) 和一棵树,问有多少个排列 \(\{a_i\}\) 使得对于树上每一条边 \((u,v)\) 都有 \((a_u, a_v)\in E\) .

\(n\le 17\),\(m\le \dfrac 12n(n-1)\) .

题解

前置知识 - 子集反演

首先反演是啥大家都知道吧

正着的子集反演:

\[\boxed{f(S)=\sum_{T\subseteq S}g(T)\quad \Longleftrightarrow\quad g(S)=\sum_{T\subseteq S}(-1)^{|S|-|T|}f(T)}
\]

证明(抄的 vfleaking 神仙的):

Lemma.

\[\sum_{T\subseteq S}(-1)^{|T|}=|S=\varnothing|
\]

和二项式反演形式相似吧


好,回到原命题 .

\[\large\begin{aligned}g(S)&=\sum_{T\subseteq S} [S-T=\varnothing]g(T)\\&=\sum_{T\subseteq S}\sum_{R\subseteq S-T}(-1)^{|R|}g(T)\\&=\sum_{T\subseteq S}(-1)^{|T|}\sum_{R\subseteq S-T}g(R)\\&=\sum_{T\subseteq S}(-1)^{|T|}f(T-S)\\&=\sum_{T\subseteq S}(-1)^{|S|-|T|}f(T)\end{aligned}
\]

和原式长得一模一样,证毕 .


似乎 vfk 的课件里 \(p,q\) 是二进制表示的集合吧,希望我没理解错QwQ

vfk 课件偷偷在第三步换了一下变量名,坏坏

(反向子集反演:

\[f(S)=\sum_{S\subseteq T}g(T)\quad \Longleftrightarrow\quad g(S)=\sum_{S\subseteq T}(-1)^{|T|-|S|}f(T)
\]

可以看做正着反演的直接推论)

别的不说了,这里又不是「子集反演学习笔记」.

1. 朴素 dp

考虑状压 dp.

令 \(dp_{i, j, S}\) 表示 \(i\) 点表示 \(j\),已经表示了 \(S\) 状态的方案数 .

\(i,j\) 维度显然,\(S\) 是为了去重,因为 \(a\) 必须是排列 .

转移非常容易:

\[\large dp_{i, j, S}=\prod_{v\in\operatorname{son}(i)}\sum_{q\subseteq S, (j,p)\in E}dp_{v, p, q}
\]

会点计数原理(加法,乘法)就能推出来 .

时间复杂度 \(O(n^33^n)\) .

定睛一看:\(n\le 17\),寄!

2. 优化一下

看看状态,这个 \(S\) 看起来挺没用,于是直接丢掉!

没了 \(S\) 我们就不能去重了呐,所以 \(a\) 是排列这个东西就不太能保证了 .

在 \(a\) 不一定是排列的前提下,定义:

  • \(f(S)\):\(a\) 恰好使用了 \(S\) 中的所有点的方案数
  • \(g(S)\):\(a\) 至多使用了 \(S\) 中的所有点的方案数

我们要的答案就是 \(f(U)\)(\(U\) 是全集)

显然有

\[g(S)=\sum_{T\subseteq S}f(S)
\]

妈呀这不是子集反演吗,于是

\[f(S)=\sum_{T\subseteq S}(-1)^{|S|-|T|}g(T)
\]

于是我们只要求 \(g\) 即可!

\(g\) 咋求呐?考虑 dp,令 \(dp_{i, j}\) 表示 \(i\) 点表示 \(j\),在 \(g\) 的条件下的方案数 .

于是可以轻易转移(与朴素的类似)

\[\large dp_{i, j}=\prod_{v\in\operatorname{son}(i)}\sum_{p\in S, (j,p)\in E}dp_{v, p}
\]

我草这不是和朴素的一模一样吗

于是

\[\large g(S)=\sum_{k\in S}dp_{root, k}
\]

\(root\) 是树的根,你随便钦定一个就好了 .

单次 dp \(O(n^22^n)\),总时间复杂度 \(O(n^32^n)\),大体能过

细节

答案不大于 \(n!\le 355687428096000\),long long 完全能行 .

然而 \(g(S)\le n^n\le 827240261886336764177\),unsigned long long 都不行 .

我们自然可以用 __int128,但是,其实我们随便选一个幸运数字 \(M>n!\),然后答案对 \(M\) 取模就行了!

方便点,unsigned long long 自然溢出就完啦!是不是很简单

有符号整形溢出是 UB,但是我懒的改了,我代码里是有符号的 .

代码

提交记录 https://uoj.ac/submission/528128 .

吸个氧跑得飞快,不吸就会 TLE(或许是用 vector 太多了?)

自以为可读性好!

Ref.

ZJOI2016 小星星 题解的更多相关文章

  1. 【题解】P3349 [ZJOI2016]小星星 - 子集dp - 容斥

    P3349 [ZJOI2016]小星星 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 小 \(Y\) 是一个心灵手巧 ...

  2. BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]

    4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...

  3. 4455[Zjoi2016]小星星 容斥+dp

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 527  Solved: 317[Submit][Status] ...

  4. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  5. 【BZOJ 4455】 4455: [Zjoi2016]小星星 (容斥原理+树形DP)

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 426  Solved: 255 Description 小Y是 ...

  6. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  7. bzoj 4455 [Zjoi2016]小星星 树形dp&容斥

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 643  Solved: 391[Submit][Status] ...

  8. 【题解】Luogu P3349 [ZJOI2016]小星星

    原题传送门 我们考虑设\(dp_{i,j}\)表示树上的点\(i\)在图上对应的点为\(j\)时\(i\)和子树对应在图上的方案数 \(dp_{u_i}=\prod_{v \in u.son} dp_ ...

  9. [ZJOI2016]小星星

    题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. 有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这个饰品只剩下了 ...

随机推荐

  1. 生成器对象(自定义迭代器),自定义range方法,模块

    自定义迭代器 一 .生成器与yield ''' 我们得到一个迭代器通常都是调用可迭代对象的__iter__方法 ,例如 list.iter() 得到一个迭代器, 但是当list很大时候,就违背了pyt ...

  2. Blazor和Vue对比学习(基础1.8):Blazor中实现计算属性和数据监听

    1.7章<传递UI片断>,需要做几个案例,这部分暂停消化几天.我们先把基础部分相对简单的最后两章学习了. 计算属性和数据监听是Vue当中的概念,本质上都是监听数据的变化,然后做出响应.两者 ...

  3. docker-compose 启动 rabbitmq

    说明 前提条件 ubuntu-20.04-server docker & docker-compose 安装参考 安装 准备 rabbitmq.conf 新建 rabbitmq.conf 文件 ...

  4. undefined与null与?. ??

    undefined: undefined是全局对象的一个属性,在一下情况下都是undefined: 当一个变量没有被赋值: 当一个函数没有返回值: 当某个对象不存在某个属性却去访问: 当函数定义了形参 ...

  5. 好客租房23-react组件的两种创建方式(抽离为独立js)

    2.3抽离为单独组件 组件作为一个单独的个体,一般把每个组件放在单独的js中文件中 1创建hello.js 2在hello.js中导入React 3创建组件(函数或者类) hello.js子组件 // ...

  6. 爬取百度页面代码写入到文件+web请求过程解析

    一.爬取百度页面代码写入到文件 代码示例: from urllib.request import urlopen #导入urlopen包 url="http://www.baidu.com& ...

  7. 基于 GraphQL 的 BFF 实践

    随着软件工程的发展,系统架构越来越复杂,分层越来越多,分工也越来越细化.我们知道,互联网是离用户最近的行业,前端页面可以说无时无刻不在变化.前端本质上还是用户交互和数据展示,页面的高频变化意味着对数据 ...

  8. 小白excel初步使用2022.06.02

    1.添加 对表格数据相加求和:在表示数据的那一列黄色表格下输入=SUM(D1:D5)或者alt+=或者SUMIF(D1:D5,">50")或者SUMIF(D1,D3:D7,1 ...

  9. 阿里巴巴开源限流组件Sentinel初探

    1 Sentinel主页 https://github.com/alibaba/Sentinel/wiki/主页 1.1 Sentinel介绍 随着微服务的流行,服务和服务之间的稳定性变得越来越重要. ...

  10. 【Linux系列】-Linux中用shell脚本从SFTP服务器下载文件

    银企直连的电子回单接口中,部分银行使用sftp服务作为文件服务器,通常只保留N天的文件内容,企业未在规定的时间范围下载文件之后就不能下载了,那么有一个自动下载的脚本岂不美滋滋. Linux安装SFTP ...