AcWing341. 洛谷P1073, NOIP2009 最优贸易
题目大意
\(~~~~~~\)一个投机倒把的奸商想要通过城市不太健全的贸易系统坑点钱,任意城市都可以买入或者卖出水晶球,他想尽量在便宜的城市买入,在贵的城市卖出,以此赚取更高的差价,他必须从一号城市开始旅行,到\(n\)号城市结束。请问他最多可以赚多少钱?
解题思路
\(~~~~~~\)这题乍一看貌似是毫无头绪的,但是我们可以通过差价高推出,他应该价格尽量低 买入,价格尽量高的卖出,所以我们可以在从\(1\sim n\) 的路径中选择一个分界点,记作\(k\),这个\(k\)点的含义就是奸商决定在\(1\sim k\)的城市中买入,\(k\sim n\)中的城市卖出,基于我们的买入尽量低,卖出尽量高原则,我们可以得到我们的基本思路:
\(~~~~~~\)枚举所有的\(k\)点,找出\(1\sim k\)中需要的价格最小的点(有路径可以到达的),用\(dmin\)数组记录, 再找出\(k\sim n\)中需要的价格最大的点(存在到\(n\)的路径的),用\(dmax\)数组记录,最后统计答案时找出\(dmax_{i}-dmin_{i}\) 的值最大的点
具体实现
\(~~~~~~\)怎么找出\(1\sim k\)中的最小点呢,难道是枚举每条\(a_{i}\sim k(\forall a_{i}\in [1,k])\)的路中最便宜的点吗?这样未免也太慢了。我们可以采用\(SPFA\)算法,枚举从\(1\)开始的单源最短路(这里最短路的松弛操作需要略做改动),这样对于\(\forall k\in [1,n]\),所有的最短距离都计算好了。
对于\(k\sim n\)的最大点我们也采用类似以上的做法:
\(~~~~~~\)我们枚举从\(k\)开始的最短路,松弛操作同样改动,那我们就可以算出\(\forall k\in [1,n]\)到\(n\)点的最大价值了。但是这样需要做\(n\)遍\(SPFA\),一定是不能再时间上通过的,所以该算法应该经过一点改进。
\(~~~~~~\)经过观察可以发现所有的汇点都是\(n\),我们就可以自然地建一个反图(将所有的边方向反转),这样子反图上跑出来的以\(n\)为源点的最长路,就是原图上各点到\(n\)的最长路了。
对于代码
\(~~~~~~~~~~~~~~~~~~~~~~~~\)我们可以写两个\(SPFA\),一个求最短路,一个求最长路
\(~~~~~~~~~~~~~~~~~~~~~~~~\)也可以合并处理,这里两份代码都放上来了
代码
两个\(SPFA\)
#include <queue>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 3e5 + 10, M = 2e6 + 10, INF = 0x3f3f3f3f;
int dmax[N], dmin[N], st[N];
int h[N], rh[N], e[M], ne[M], w[N], idx;
int n, m;
void add(int *h, int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void spfa()
{
queue<int> q;
memset(st, 0, sizeof st);
memset(dmin, 0x3f, sizeof dmin);
dmin[1] = w[1], st[1] = true, q.push(1);
while (q.size())
{
auto t = q.front(); q.pop();
st[t] = false ;
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if (dmin[j] > min(dmin[t], w[j]))
{
dmin[j] = min(dmin[t], w[j]);
if (!st[j]) st[j] = true, q.push(j);
}
}
}
}
void rspfa()
{
queue<int> q;
memset(st, 0, sizeof st);
memset(dmax, 0xcf, sizeof dmax);
dmax[n] = w[n], st[n] = true, q.push(n);
while (q.size())
{
auto t = q.front(); q.pop();
st[t] = false ;
for (int i = rh[t]; ~i; i = ne[i])
{
int j = e[i];
if (dmax[j] < max(dmax[i], w[j]))
{
dmax[j] = max(dmax[i], w[j]);
if (!st[j]) q.push(j);
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
scanf("%d", &w[i]);
memset(h, -1, sizeof h);
memset(rh, -1, sizeof rh);
while (m -- )
{
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
add(h, u, v), add(rh, v, u);
if (t == 2) add(h, v, u), add(rh, u, v);
}
spfa(), rspfa();
int res = 0;
for (int i = 1; i <= n; i ++ )
res = max(res, dmax[i] - dmin[i]);
printf("%d\n", res);
return 0;
}
观察到我们写的两个\(SPFA\)其实有很多相似点,所以可以合并成一个,加上一些参数就行(用来区分, 例如:遍历的邻接表不同,起点不同,要求的最短和最长性质不同)
但是在合并的\(SPFA\)中要注意:\(memset\)的时候因为我们传进去的距离数组只是一个指针,所以与我们要的字节大小不符合,所以应该写成memset(d, 0x3f, sizeof dmin);当然这只是示例
\(合并的SPFA\)
#include <queue>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 2e5 + 10, M = 1e6 + 10, INF = 0x3f3f3f3f;
int dmax[N], dmin[N], st[N];
int h[N], rh[N], e[M], ne[M], w[N], idx;
int n, m;
void add(int *h, int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void spfa(int *h, int *d, int S, int type)
{
memset(st, 0, sizeof st);
if (type) memset(d, 0xcf, sizeof dmax);
else memset(d, 0x3f, sizeof dmin);
queue<int> q;
d[S] = w[S], q.push(S), st[S] = true;
while (q.size())
{
auto t = q.front(); q.pop();
st[t] = false ;
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if (type) {
if (d[j] < max(d[t], w[j]))
{
d[j] = max(d[t], w[j]);
if (!st[j]) q.push(j);
}
}
else {
if (d[j] > min(d[t], w[j]))
{
d[j] = min(d[t], w[j]);
if (!st[j]) q.push(j);
}
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
scanf("%d", &w[i]);
memset(h, -1, sizeof h);
memset(rh, -1, sizeof rh);
while (m -- )
{
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
add(h, u, v), add(rh, v, u);
if (t == 2) add(h, v, u), add(rh, u, v);
}
spfa(h, dmin, 1, 0); // 正着跑最短路
spfa(rh, dmax, n, 1); // 反着跑最长路
int res = 0;
for (int i = 1; i <= n; i ++ )
res = max(res, dmax[i] - dmin[i]);
printf("%d\n", res);
return 0;
}
写法对比
两个\(SPFA\):时间\(250ms\),码量\(94\)行,容易\(Debug\)(原因:分开逻辑清晰一点)
一个\(SPFA\):时间\(227ms\),码量\(80\)行,容易出\(Bug\),不好\(Debug\)(原因:我菜)
\(\color{Green}{Accepted!}\)
AcWing341. 洛谷P1073, NOIP2009 最优贸易的更多相关文章
- 【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)
次元传送门:洛谷P1073 思路 一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下 因为每个城市可以走好几次 所以说我们可以在图上 ...
- 洛谷1073 NOIP2009 最优贸易
题目大意 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- 【洛谷P1073】最优贸易
题目大意:给定一个 N 个点,M 条边(存在反向边)的有向图,点有点权,求一条从 1 到 N 的路径上,任意选出两个点 p,q (p 在前,q在后),两点点权的差值最大. 根据最短路的 dp 思想,可 ...
- 【洛谷 P1073】 最优贸易 (Tarjan缩点+拓扑排序)
题目链接 先\(Tarjan\)缩点,记录每个环内的最大值和最小值. 然后跑拓扑排序,\(Min[u]\)表示到\(u\)的最小值,\(ans[u]\)表示到\(u\)的答案,\(Min\)和\(an ...
- [Luogu 1073] NOIP2009 最优贸易
[Luogu 1073] NOIP2009 最优贸易 分层图,跑最长路. 真不是我恋旧,是我写的 Dijkstra 求不出正确的最长路,我才铤而走险写 SPFA 的- #include <alg ...
- [NOIP2009]最优贸易(图论)
[NOIP2009]最优贸易 题目描述 CC 国有 \(n\) 个大城市和 \(m\) 条道路,每条道路连接这 \(n\) 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 \(m\ ...
- 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)
传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...
- 【洛谷P1073】[NOIP2009]最优贸易
最优贸易 题目链接 看题解后感觉分层图好像非常NB巧妙 建三层n个点的图,每层图对应的边相连,权值为0 即从一个城市到另一个城市,不进行交易的收益为0 第一层的点连向第二层对应的点的边权为-w[i], ...
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
- 洛谷P1073 最优贸易 [图论,DP]
题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...
随机推荐
- 工厂里懂得mes和erp有发展吗?
在工厂里懂得MES.ERP肯定有发展啊,现在数字化转型.智能制造正当时,ERP.MES之类的系统是刚需,只是不同工厂启动的早晚有别,使用的系统不相同而已,但知识体系.逻辑.理念等大都是相通的.比如你熟 ...
- C#-02 传入参数的一些用法2
C#_02 参数应用2 一.关于 "ref" 局部变量和 "ref" 返回 在前面已经明白了 ref 关键词传递一个对象引用给方法调用,这样在方法中对对象修改过 ...
- PHP全栈开发(一):CentOS 7 配置LAMP
服务器CentOS7 IP地址:10.28.2.249 进行网络配置 可以使用ip address命令查看当前的网卡状态 两张网卡,一张lo网卡一张ens160网卡 Ens160这个网卡的配置文件为/ ...
- golang的内存管理
0.1.索引 https://blog.waterflow.link/articles/1663406367769 1.内存管理 内存管理是管理计算机内存的过程,在主存和磁盘之间移动进程以提高系统的整 ...
- 【高并发】深度解析ScheduledThreadPoolExecutor类的源代码
在[高并发专题]的专栏中,我们深度分析了ThreadPoolExecutor类的源代码,而ScheduledThreadPoolExecutor类是ThreadPoolExecutor类的子类.今天我 ...
- 1.轮询、长轮询、websocket简介
一.轮询 前端每隔固定时间向后台发送一次请求,询问服务器是否有新数据 缺点: 延迟,需要固定的轮询时间,不一定是实时数据 大量耗费服务器内存和宽带资源,因为不停的请求服务器,很多时候 并没有新的数 ...
- 七、Ajax请求
七.Ajax请求 客户端(浏览器)向服务端发起请求的形式: 地址栏:GET 超链接标签:GET form表单:GET或POST Ajax(重要):GET或POST或PUT或DELETE AJAX(As ...
- 沁恒CH32V003(二): Ubuntu20.04 MRS和Makefile开发环境配置
目录 沁恒CH32V003(一): CH32V003F4P6开发板上手报告和Win10环境配置 沁恒CH32V003(二): Ubuntu20.04 MRS和Makefile开发环境配置 硬件准备 沁 ...
- HTML5+CSS3常见布局方式
1.等高布局 1.1 代码 等高布局是指子元素在父元素中高度相等的布局方式 <div class="father"> <div class="f1&qu ...
- TKK: 更新 TKK 失败,请检查网络连接 idea翻译错误-IDEA翻译失败-Translation用不了
IDEA 提示:更新 TKK 失败,请检查网络连接 解决方法: 1.进入 C:\Windows\System32\drivers\etc 找到 hosts文件修改 注意:如果用记事本打开不能修改,则修 ...