BZOJ1076/Luogu2473 奖励关(SCOI2008)状压DP+期望DP
题意:给n(n<=15)种宝物宝物有价值w且每个宝物有一个前置宝物(即你必须先吃过它的所有前置宝物至少一次才能吃该宝物),共有m轮游戏,每一轮会在n种宝物等概率选一个出来,因为宝物价值可正可负你可以选择吃掉或者不吃,问m轮后你能获得的最大价值。
解法:这道题挺有意思的。看到n<=15容易想到用状压DP,于是我的第一想法是因为
但是此题起点是一定的但是终点不一定,所以从终点往回推可能会简单一些,于是设dp[x][S]代表1~x-1轮的状态为S,x~m轮的最大期望为dp[x][S] 。一定要重点注意这个状态的设计,这样设计状态会使得状态转移方程也比较好写:首先是对于每一个dp[i][j]要枚举k代表在此状态下等概率发的牌是第k种宝物
dp[i][j]+=max(dp[i+1][j|(1<<k-1)]+w[k],dp[i+1][j]); (k在状态j下能吃,选择吃或不吃)
dp[i][j]+=dp[i+1][j]; (k在状态下不能吃,没得选择,肯定不能吃)
加完之后是期望和,那么dp[i][j]/=n; 代表期望。
初始化dp[m+1][]=0 ,答案就是dp[1][0]。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=;
int n,m,w[N];
vector<int> G[N];
double dp[][<<N]; //dp[x][S]代表1~x-1轮的状态为S,x~m轮的最大期望为dp[x][S] bool check(int x,int S) {
for (int i=;i<G[x].size();i++) {
int y=G[x][i];
if ((S&(<<(y-)))==) return ;
}
return ;
} int main()
{
cin>>m>>n;
for (int i=;i<=n;i++) {
scanf("%d",&w[i]); int t;
while (scanf("%d",&t) && t) G[i].push_back(t);
} for (int i=m;i;i--)
for (int j=;j<(<<n);j++) {
for (int k=;k<=n;k++)
if (check(k,j)) dp[i][j]+=max(dp[i+][j|(<<k-)]+w[k],dp[i+][j]);
else dp[i][j]+=dp[i+][j];
dp[i][j]/=(double)n;
}
printf("%.6lf\n",dp[][]);
return ;
}
BZOJ1076/Luogu2473 奖励关(SCOI2008)状压DP+期望DP的更多相关文章
- BZOJ_1076_[SCOI2008]奖励关_状压DP
BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...
- 【BZOJ1076】奖励关(动态规划,数学期望)
[BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期 ...
- BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 3074 Solved: 1599 [Submit][Sta ...
- BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】
Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...
- 【BZOJ1076】[SCOI2008] 奖励关(状压DP)
点此看题面 大致题意:总共有\(n\)个宝物和\(k\)个回合,每个回合系统将随机抛出一个宝物(抛出每个宝物的概率皆为\(1/n\)),吃掉一个宝物可以获得一定的积分(积分可能为负),而吃掉某个宝物有 ...
- 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)
http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...
- P4547 [THUWC2017]随机二分图(状压,期望DP)
期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...
- bzoj 1076: [SCOI2008]奖励关【状压dp+概率dp】
设f[i][s]为前i步,选的礼物集合为s的方案数,然而并不会转移-- 看了hzwer的blog,发现要倒着转移,然后答案就是f[1][0] 妙啊 #include<iostream> # ...
- [SCOI2008]奖励关_状压动归_数学期望
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 20; dou ...
随机推荐
- Task6.神经网络基础
BP: 正向计算loss,反向传播梯度. 计算梯度时,从输出端开始,前一层的梯度等于activation' *(与之相连的后一层的神经元梯度乘上权重的和). import torch from tor ...
- Callable使用示例
之前工作中也有使用过Callable,但是却没有使用Thread对象去操作过,今晚 小组培训,涨知识了,现特意记录一下,以免忘记. 先看一下Thread的构造器 可以看到,Thread类并没有提供参数 ...
- Selenium-三种等待方式
在UI自动化测试中,必然会遇到环境不稳定,网络慢的情况,这时如果不做任何处理的话,代码会由于没有找到元素而报错.这时我们就要用到wait,而在Selenium中,我们可以用到一共三种等待,每一种等待都 ...
- C指针,&,*,指针的指针
C指针: 指向变量的地址,想象成房间号 &: 取地址符号 *:间接访问符号, 访问p所存地址的内容 #include <iostream> int main(int argc, c ...
- redis学习 --Hash
一:我们可以将Redis中的Hash类型看成具有String Key和String Value的map容器.所以该类型非常适合于存储值对象的信息.如Username.Password和Age等.如果H ...
- 浅谈MySQL优化
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体 ...
- EXP-00091和IMP-00010报错
原来导出表的库:database ORACLE_SID=TEST0221 版本: 11.2.0.4需要导进的库:database ORACLE_SID=PROD 版本:10.2.0.1因为字符集的问题 ...
- [design pattern](0) 概述
一 引语 大家好,这是我第一次在网上写文章.从学校毕业一年多,感觉还有很多东西需要去学习.最近正在学习设计模式,希望可以在博客园把我学习的知识记录下来,能够和大家一起讨论设计模式相关的话题,也希望这个 ...
- java 为啥可打印date
打印一个对象的时候,会打印出它的toString方法的返回值,Date重写了toString方法.
- vue.jsc初体验
Vue 1.安装脚手架 (1)npm install -g vue-cli (2)Vue -v //查看是否安装成功 (3)Vue init webpack name(名称) (4)Npm insta ...