BZOJ1076/Luogu2473 奖励关(SCOI2008)状压DP+期望DP
题意:给n(n<=15)种宝物宝物有价值w且每个宝物有一个前置宝物(即你必须先吃过它的所有前置宝物至少一次才能吃该宝物),共有m轮游戏,每一轮会在n种宝物等概率选一个出来,因为宝物价值可正可负你可以选择吃掉或者不吃,问m轮后你能获得的最大价值。
解法:这道题挺有意思的。看到n<=15容易想到用状压DP,于是我的第一想法是因为
但是此题起点是一定的但是终点不一定,所以从终点往回推可能会简单一些,于是设dp[x][S]代表1~x-1轮的状态为S,x~m轮的最大期望为dp[x][S] 。一定要重点注意这个状态的设计,这样设计状态会使得状态转移方程也比较好写:首先是对于每一个dp[i][j]要枚举k代表在此状态下等概率发的牌是第k种宝物
dp[i][j]+=max(dp[i+1][j|(1<<k-1)]+w[k],dp[i+1][j]); (k在状态j下能吃,选择吃或不吃)
dp[i][j]+=dp[i+1][j]; (k在状态下不能吃,没得选择,肯定不能吃)
加完之后是期望和,那么dp[i][j]/=n; 代表期望。
初始化dp[m+1][]=0 ,答案就是dp[1][0]。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=;
int n,m,w[N];
vector<int> G[N];
double dp[][<<N]; //dp[x][S]代表1~x-1轮的状态为S,x~m轮的最大期望为dp[x][S] bool check(int x,int S) {
for (int i=;i<G[x].size();i++) {
int y=G[x][i];
if ((S&(<<(y-)))==) return ;
}
return ;
} int main()
{
cin>>m>>n;
for (int i=;i<=n;i++) {
scanf("%d",&w[i]); int t;
while (scanf("%d",&t) && t) G[i].push_back(t);
} for (int i=m;i;i--)
for (int j=;j<(<<n);j++) {
for (int k=;k<=n;k++)
if (check(k,j)) dp[i][j]+=max(dp[i+][j|(<<k-)]+w[k],dp[i+][j]);
else dp[i][j]+=dp[i+][j];
dp[i][j]/=(double)n;
}
printf("%.6lf\n",dp[][]);
return ;
}
BZOJ1076/Luogu2473 奖励关(SCOI2008)状压DP+期望DP的更多相关文章
- BZOJ_1076_[SCOI2008]奖励关_状压DP
BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...
- 【BZOJ1076】奖励关(动态规划,数学期望)
[BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期 ...
- BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 3074 Solved: 1599 [Submit][Sta ...
- BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】
Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...
- 【BZOJ1076】[SCOI2008] 奖励关(状压DP)
点此看题面 大致题意:总共有\(n\)个宝物和\(k\)个回合,每个回合系统将随机抛出一个宝物(抛出每个宝物的概率皆为\(1/n\)),吃掉一个宝物可以获得一定的积分(积分可能为负),而吃掉某个宝物有 ...
- 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)
http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...
- P4547 [THUWC2017]随机二分图(状压,期望DP)
期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...
- bzoj 1076: [SCOI2008]奖励关【状压dp+概率dp】
设f[i][s]为前i步,选的礼物集合为s的方案数,然而并不会转移-- 看了hzwer的blog,发现要倒着转移,然后答案就是f[1][0] 妙啊 #include<iostream> # ...
- [SCOI2008]奖励关_状压动归_数学期望
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 20; dou ...
随机推荐
- python全栈开发,Day43(引子,协程介绍,Greenlet模块,Gevent模块,Gevent之同步与异步)
昨日内容回顾 I/O模型,面试会问道 I/O操作,不占用CPU,它内部有一个专门的处理I/O模块 print和写log属于I/O操作,它不占用CPU 线程 GIL保证一个进程中的多个线程在同一时刻只有 ...
- [AGC001E]BBQ Hard 组合数学
题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...
- Nginx的启动、停止与重启---linux
一.选定安装文件目录 可以选择任何目录 cd /usr/local/src 二.安装PCRE库 ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcr ...
- 循序渐进实现仿QQ界面(三):界面调色与控件自绘
本篇讲述如何进行界面调色.界面调色一般有两种方法,调色板和HSL色彩变换.调色板局限于256色,这里不采用,因此用HSL色彩变换实现.首先要了解一下什么是HSL色彩空间,完整且详尽的知识请到维基百科去 ...
- linux用setup命令来更改ip配置
在有安装系统桌面情况下,可以使用图形化形式来配置ip地址, 在命令行下,输入“setup”调出网卡.防火墙等配置界面: 2 选择“network configuration“,回车: 选择“devic ...
- delphi 按钮 2 行
http://bbs.csdn.net/topics/390230792 回复于: 2015-06-01 21:11:02 最简单的办法:------------------------以下是转载的, ...
- poj1182食物链(三类并查集)
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有人用两种 ...
- c#Cache的用法
public class Cache { /// <summary> /// 获取数据缓存 /// </summary> /// <param name="ca ...
- OSPF多区域配置;骨干区域与非骨干区域;ABR边界路由器;LSA和SPF算法
SPF:链路状态路由算法.基本用于OSPF中,但是要求路由器路由数据库足够大,因为链路状态信息包括很多内容,这也是一个缺点. OSPF是一种内部网关协议(IGP) OSPF路由协议是一种典型的链路状态 ...
- [Linux] 029 脚本安装包
1. 脚本安装包 脚本安装包并不是独立的软件包类型,常见安装的是源码包 是人为把安装过程写成了自动安装的脚本,只要执行脚本,定义简单的参数,就可以完成安装 非常类似于 Windows 下软件的安装方式 ...