使用单调队列维护决策三元组实现决策单调性优化DP的一些细节
以[BZOJ2687]交与并为例给出代码。
#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
#define Size(a) (int)a.size()
#define pb push_back
#define lowbit(x) ((x)&(-(x)))
typedef long long LL;
using std::cerr;
using std::endl;
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int MAXN=1000005;
int n,tot;
LL ans;
struct seg{
int l,r;
inline friend bool operator < (seg x,seg y){
return x.l==y.l?x.r>y.r:x.l<y.l;
}
}a[MAXN],b[MAXN];
inline LL calc(seg x,seg y){
if(x.r<=y.l)return 0;
return 1ll*(y.r-x.l)*(x.r-y.l);
}
int bit[MAXN];
inline void ins(int x,int y){for(register int i=x;i<=1e6;i+=lowbit(i))bit[i]=std::max(bit[i],y);}
inline int ask(int x){int ret=0;for(register int i=x;i;i-=lowbit(i))ret=std::max(ret,bit[i]);return ret;}
int hd,tl;
struct Opt{
int j,l,r;
}q[MAXN];
int main(){
n=read();
rin(i,1,n)a[i].l=read(),a[i].r=read();
std::sort(a+1,a+n+1);
int maxr=0;
rin(i,1,n){
if(a[i].r<=maxr){
ans=std::max(ans,1ll*(a[i].r-a[i].l)*ask(1e6-a[i].r+1));
continue;
}
maxr=a[i].r;
b[++tot]=a[i];
ins(1e6-a[i].r+1,a[i].r-a[i].l);
}
n=tot;hd=tl=1;q[1]=(Opt){1,2,n};
rin(i,2,n){
int j=q[hd].j;
ans=std::max(ans,calc(b[j],b[i]));
++q[hd].l;if(q[hd].l>q[hd].r)++hd;
int pos=0;
while(1){
if(hd>tl){pos=i+1;break;}// 当队列为空时直接插入
int jt=q[tl].j,lt=q[tl].l,rt=q[tl].r;
if(calc(b[i],b[rt])<calc(b[jt],b[rt])){pos=rt+1;break;}// 在q[tl].r处严格劣于队尾决策时插入队尾
else if(calc(b[i],b[lt])>=calc(b[jt],b[lt])){--tl;continue;}// 在q[tl].l处不劣于队尾决策时删除队尾
else{
int l=lt,r=rt;
while(l<=r){
int mid=((l+r)>>1);
if(calc(b[i],b[mid])>=calc(b[jt],b[mid]))pos=mid,r=mid-1;// 找到队尾决策所对应区间内第一个不劣于队尾决策的位置
else l=mid+1;
}
q[tl].r=pos-1;// 更新队尾决策所对应区间的右端点
break;
}
}
if(pos<=n)q[++tl]=(Opt){i,pos,n};
}
printf("%lld\n",ans);
return 0;
}
使用单调队列维护决策三元组实现决策单调性优化DP的一些细节的更多相关文章
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- 决策单调性优化dp 专题练习
决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队 ...
- 算法学习——决策单调性优化DP
update in 2019.1.21 优化了一下文中年代久远的代码 的格式…… 什么是决策单调性? 在满足决策单调性的情况下,通常决策点会形如1111112222224444445555588888 ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...
- BZOJ 1342: [Baltic2007]Sound静音问题 | 单调队列维护的好题
题目: 给n个数字,一段合法区间[l,l+m-1]要求max-min<=c 输出所有合法区间的左端点,如果没有输出NONE 题解: 单调队列同时维护最大值和最小值 #include<cst ...
- [USACO2003][poj2018]Best Cow Fences(数形结合+单调队列维护)
http://poj.org/problem?id=2018 此乃神题……详见04年集训队论文周源的,看了这个对斜率优化dp的理解也会好些. 分析: 我们要求的是{S[j]-s[i-1]}/{j-(i ...
随机推荐
- Feign声明式服务调用
Feign是一种声明式.模板化的HTTP客户端(仅在Application Client中使用).声明式调用是指,就像调用本地方法一样调用远程方法,无需感知操作远程http请求. Spring Clo ...
- CSP/NOIP 2019 游记
Day0 打牌 Day1 \(T1\) 没开\(ull\), 不知道有几分 \(T2\) \(N^2\)暴力+链, 没搞出树上做法, \(70\)分 \(T3\) 标准\(10\)分( 感觉今年省一稳 ...
- deepin 15.10.1 GTX1060 NVIDIA 驱动安装,双屏显示问题记录
有一段时间没有用Linux了.由于买了个4k的戴尔显示屏,在deepin系统上无法用,从昨晚到现在,总于解决了我的问题! 问题1:无法直接在深度的显卡驱动管理器哪里直接切换,网上看到很多人都有这个问题 ...
- 哈希表(Hash table)
- 基于Chromium的浏览器已上线通用“显示密码”按钮
基于Chromium的Edge在日前发布的Canary通道版本中,对用户界面进行了优化调整从而让InPrivate窗口变得更加简洁.在今天获得的版本更新中,微软继续带来了隐私相关的新内容--实现通用的 ...
- date( ) 日期函数
date('Y-m-dT2:00') 实际时间为14:00 date('Y-m-d 2:00') 实际时间为2:00 扩展:每天的时间戳秒数为 86400
- PhpStorm中如何使用database工具,详细操作方法
1.简介: PhpStorm是一个轻量级且便捷的PHP IDE,其提供的智能代码补全,快速导航以及即时错误检查等功能大大提高了编码效率.它以其独特的开发便利性,短时间内赢得了大量PHPer的青睐. ...
- 【鸽】poj3311 Hie with the Pie[状压DP+Floyd]
题解网上一搜一大坨的,不用复述了吧. 只是觉得网上dp方程没多大问题,但是状态的表示含义模糊.不同于正常哈密顿路径求解,状态表示应当改一下. 首先定义一次移动为从一个点经过若干个点到达另一个点,则$f ...
- 胡昊—第6次作业—static关键字、对象
#题目1:编写一个类Computer,类中含有一个求n的阶乘的方法.将该类打包,并在另一包中的Java文件App.java中引入包,在主类中定义Computer类的对象,调用求n的阶乘的方法(n值由参 ...
- MongoDB学习笔记之文档
#向集合中插入文档有两种方式(insert.save) db.col.insert({title: 'MongoDB 教程', description: 'MongoDB 是一个 Nosql 数据库' ...