转载请注明:

仰望大牛的小清新http://www.cnblogs.com/luruiyuan/

本文原网址http://www.cnblogs.com/luruiyuan/p/6660142.html

我用的Ubuntu版本是 16.04 ,并且使用了 gnome 作为桌面(这一点无关紧要),经历了许多波折,终于完成了以 tensorflow 为后端的 keras 的安装。

tensorflow-GPU 版本的安装:

1.下载 CUDA 8.0

地址:https://developer.nvidia.com/cuda-downloads

安装如下版本:

2.下载 cuDNN v5 (这里我下载的是 v6, 但是事实证明 tensorflow 不直接支持 v6,除非你自己编译时制定了 v6,否则按照如下教程安装的 tensorflow 只能加载 v5)

地址: https://developer.nvidia.com/cudnn

这里需要先 登录/注册 后才能下载

3.安装 NVIDIA 驱动:

首先打开 terminal,输入一下指令,更新应用列表

sudo apt-get update

多亏了 Linux 社区的强大支持,我们可以用很简洁的方式安装驱动:

按下 win 按键,打开菜单,如图:

然后在上方的 type to search 中输入: additional drivers 打开 "additional drivers —— 附加驱动",然后选择 与自己显卡匹配的 NVIDIA 驱动,我这里是

using nvidia binary drivers (375)

然后选择 应用更改,这里安装可能会失败,此时你可以继续选择应用更改,多安装几次即可

安装完成后,选择 restart

4. gcc 降版本

CUDA8.0 不支持 gcc 5.0 及以上的编译器,而系统自带的是5.4及以上版本,因此我们需要降版本,否则会在后面报错

在terminal中输入如下指令,将 gcc 版本降到 4.9

sudo apt-get install g++-4.9
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-
sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc
sudo update-alternatives --set cc /usr/bin/gcc
sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++
sudo update-alternatives --set c++ /usr/bin/g++ 

5.安装 CUDA 8.0

cd /media/你的用户名/TOSHIBA\ EXT/alu/CUDA/ # 进入cuda 所在文件夹
# 根据官网上的提示安装 cuda 8.0
sudo dpkg -i cuda-repo-ubuntu1604---rc_8.0.27-1_amd64​.deb
sudo apt-get update
sudo apt-get install cuda​

6. 安装 cuDNN

cd  cd /media/你的用户名/TOSHIBA\ EXT/alu/CUDA/ # 进入 cuDNN 安装文件的所在路径
tar xvzf cudnn-8.0-linux-x64-v6..tgz # 解压
sudo cp cuda/include/cudnn.h /usr/local/cuda/include # 复制到 include 中
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 # 复制到 lib64 中
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* # 讲头文件复制进去

7. 配置CUDA环境变量

开启 GPU 支持:

根据官网教程

我们在terminal中键入下列命令:

sudo gedit ~/.bash_profile # 打开.bash_profile 这是用户的环境变量,不是全局的

然后在打开的文本末尾加入:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda

保存并关闭后,输入下列命令使环境变量生效:

source ~/.bash_profile # 使被更改的环境变量生效

安装完成后,一定要通过如下两条命令对驱动进行检验:

1. NVIDIA的设置界面

nvidia-settings # 打开 NVIDIA 设置界面

这条指令打开的界面如下:

2. NVIDIA GPU 列表

nvidia-smi

这条指令会在 terminal 中产生GPU列表,如,我这里只有一个GPU

网上有些人抄别人的博客,说 nvcc -V 就可以验证,经过我实测,存在 nvcc -V 正常输出但是驱动仍安装失败的现象,因此,上述验证方法是不可信的

8.安装 python3.5.2

由于tensorflow1.0 对于 python3 支持更好,并且目前只支持python3.5.2,因此我们选择 python 3.5.2。

使用 Anaconda3-4.2.0-Linux-x86_64.sh 进行安装,地址如下:

https://repo.continuum.io/archive/

安装完成后,添加环境变量,将其设置为默认的 python 解释器

首先打开环境变量的文件

gedit ~/.bashrc

然后在文件末尾加入 anaconda3 的路径

export PATH=/home/你的路径/anaconda3/bin:$PATH

最后使我们的改动生效

source ~/.bashrc

这样,我们在terminal中输入 python 就会默认打开 anaconda3

这样我们就可以安心使用python3了。

9.安装 keras 和 tensorflow

有了上述安装过程,我们系统中默认的pip将会是anaconda3中自带的pip,这样我们只需要使用pip即可安装 keras 和 tensorflow 到 anaconda 中。

执行如下命令:

pip install tensorflow-gpu keras # 安装 gpu 版本的 tensorflow 和 keras

安装完成后,我们使用如下命令,即可检验是否成功:

python -c "import keras"

如果看到如下输出,就说明安装成功

当然了,我这里安装的 cuDNN 由于版本过高,暂时不能被pip安装的tensorflow所支持,如果改为 cuDNN v5 就能够正常支持了。

希望自己的这篇文章能对像我一样的新手有所帮助。

参考资料:

[1]: ubuntu16.04下安装TensorFlow(GPU加速)----详细图文教程

[2]: Ubuntu16.04+cuda8.0+caffe安装教程

Ubuntu 安装 tensorflow-gpu + keras的更多相关文章

  1. ubuntu安装 tensorflow GPU

    安装支持GPU的tensorflow前提是正确安装好了 CUDA 和 cuDNN. CUDA 和 cuDNN的安装见 Nvidia 官网和各种安装教程,应该很容易,重点是要选准了支持自己GPU的 CU ...

  2. 【Tensorflow】Ubuntu 安装 Tensorflow gpu

    安装环境:Ubuntu 16.04lts 64位,gcc5.4 1.安装Cuda 1. 下载cuda toolkit. 下载cuda8.0 地址:https://developer.nvidia.co ...

  3. Ubuntu在Anaconda中安装TensorFlow GPU,Keras,Pytorch

    安装TensorFlow GPU pip install --ignore-installed --upgrade tensorflow-gpu 安装测试: $ source activate tf ...

  4. 通过Anaconda在Ubuntu16.04上安装 TensorFlow(GPU版本)

    一. 安装环境 Ubuntu16.04.3 LST GPU: GeForce GTX1070 Python: 3.5 CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN v6 ...

  5. windows安装TensorFlow和Keras遇到的问题及其解决方法

    安装TensorFlow在Windows上,真是让我心力交瘁,想死的心都有了,在Windows上做开发真的让人发狂. 首先说一下我的经历,本来也就是起初,网上说python3.7不支持TensorFl ...

  6. win10+anaconda安装tensorflow和keras遇到的坑小结

    win10下利用anaconda安装tensorflow和keras的教程都大同小异(针对CPU版本,我的gpu是1050TI的MAX-Q,不知为啥一直没安装成功),下面简单说下步骤. 一 Anaco ...

  7. Anaconda安装tensorflow和keras(gpu版,超详细)

    本人配置:window10+GTX 1650+tensorflow-gpu 1.14+keras-gpu 2.2.5+python 3.6,亲测可行 一.Anaconda安装 直接到清华镜像网站下载( ...

  8. ubuntu16.04下安装TensorFlow(GPU加速)----详细图文教程【转】

    本文转载自:https://blog.csdn.net/zhaoyu106/article/details/52793183 le/details/52793183 写在前面 一些废话 接触深度学习已 ...

  9. ubuntu 安装TensorFlow

    1.安装pip $ sudo apt-get install python-pip python-dev 2.安装 TensorFlow for Python 2.7 # Ubuntu/Linux - ...

  10. Ubuntu18.04 安装TensorFlow 和 Keras

    TensorFlow和Keras是当前两款主流的深度学习框架,Keras被采纳为TensorFlow的高级API,平时做深度学习任务,可以使用Keras作为深度学习框架,并用TensorFlow作为后 ...

随机推荐

  1. 【bzoj3362/3363/3364/3365】[Usaco2004 Feb]树上问题杂烩 并查集/树的直径/LCA/树的点分治

    题目描述 农夫约翰有N(2≤N≤40000)个农场,标号1到N,M(2≤M≤40000)条的不同的垂直或水平的道路连结着农场,道路的长度不超过1000.这些农场的分布就像下面的地图一样, 图中农场用F ...

  2. 关于<meta http-equiv="Content-Type" content="text/html:charset=UTF-8">

    meta是html的元标签,其中包含了对应html的相关信息,客户端浏览器或服务端程序都会根据这些信息进行处理.我们以<meta http-equiv="Content-Type&qu ...

  3. JavaScript获取访问设备信息

    <html xmlns=http://www.w3.org/1999/xhtml> <head> <title>JavaScript获取访问设备信息</tit ...

  4. 51nod 1819 黑白树V2(树链剖分)

    第一次写如此复杂的树链剖分, 感觉自己代码能力还是挺不错的,没有调试太久(2个小时) 最后代码量高达11K orz(大部分都是重复的线段树代码,以后可以考虑优化一下代码量) 题解: 首先就是要进行一次 ...

  5. EOS docker开发环境

    EOS Wiki提供了有关如何使用docker容器编译最新版本代码的说明.但可能有它自己的一些问题,因此我们鼓励你在学习时引用下面镜像.这样最初会更容易,更快. 如果你还没有安装docker,请在此处 ...

  6. [poj] 2396 [zoj] 1994 budget || 有源汇的上下界可行流

    poj原题 zoj原题 //注意zoj最后一行不要多输出空行 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表不同赛区支出的矩阵.组委会曾经开会讨论过各类支出的总和,以及各赛区 ...

  7. TypeConverter使用

    如下代码, <Window.Resources> <local:Human x:Key="human" Name="Tester1" Chil ...

  8. 小程序根据input输入,动态设置按钮的样式

    [需求]实现当手机号已填写和协议已勾选时,“立即登录”按钮变亮,按钮可点击:若有一个不满足,按钮置灰,不可点击:实现获取短信验证码,倒计时提示操作:对不满足要求内容进行toast弹窗提示. <v ...

  9. oracle 包和包实现

    包: create or replace package sp_pexam_clear as --定义结构体 /*type re_stu is record( rname student.name%t ...

  10. centos网络配置之桥接模式

    一:前沿 来这家公司好久了,都没有开始写博客,都是积累着,都没有去写,今天实在是天激动了,我的虚拟机在配置好了之后折腾了一天都没有折腾出来可以上网,今天来了继续折腾,然后我该ip,改连接方式,我擦,终 ...