Description

Solution

对于一个有偶数个黑点的连通块,只需要任意两两配对,并把配对点上的任一条路径取反,就可以变成全白了

如果存在奇数个黑点的连通块显然无解,判掉就可以了

如果有解,解的数量肯定是一样的(白点被取反偶数次,黑点奇数次)

一共有 \(2^{m}\) 种染色方案,有 \(2^{n-1}\) 把点染成偶数个白色的方案,因为每一种方案可以产生的解是一样的,那么就有 \(2^{m-n+1}\) 种解

所以对于每一个连通块产生的贡献就是 \(2^{m-n+1}\),如果有 \(c\) 个连通块,答案就是 \(2^{m-n+c}\) 种方案

删掉一个点之后,就只需要判断是否存在新产生的连通块黑点个数是偶数,并且统计一下连通块的个数就可以知道答案了

#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=1e5+10,mod=1e9+7;
int n,m,head[N],nxt[N*2],to[N*2],num=0,ID=0,in[N];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
int dfn[N],low[N],DFN=0,w[N],d[N],f[N],bin[N*2],b[N],g[N];char s[N];
inline void tarjan(int x){
dfn[x]=low[x]=++DFN;b[x]=ID;w[x]=s[x]-'0';
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(!dfn[u]){
tarjan(u);
low[x]=min(low[x],low[u]);w[x]+=w[u];
if(low[u]>=dfn[x])d[x]|=(w[u]&1),f[x]++,g[x]+=w[u];
}
else low[x]=min(low[x],dfn[u]);
}
if(x==ID)f[x]--;
}
inline void work(){
int x,y;
cin>>n>>m;
for(int i=1;i<=m;i++){
gi(x);gi(y);in[x]++;in[y]++;
link(x,y);link(y,x);
}
scanf("%s",s+1);
int ans=m-n,c=0;
for(int i=1;i<=n;i++)
if(!dfn[i])ID=i,tarjan(i),ans++,c+=(w[i]&1);
printf("%d",c?0:bin[ans]);
for(int i=1;i<=n;i++){
if(d[i])printf(" 0");
else if(c-(w[b[i]]&1))printf(" 0");
else if((w[b[i]]-(s[i]=='1')-g[i])&1)printf(" 0");
else printf(" %d",bin[ans-in[i]+1+f[i]]);
}
}
inline void Clear(){
DFN=num=0;
for(int i=0;i<N;i++)head[i]=dfn[i]=low[i]=f[i]=d[i]=in[i]=g[i]=0;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int T;cin>>T;
bin[0]=1;for(int i=1;i<200005;i++)bin[i]=bin[i-1]*2%mod;
while(T--)Clear(),work(),puts("");
return 0;
}

bzoj 5303: [Haoi2018]反色游戏的更多相关文章

  1. bzoj 5393 [HAOI2018] 反色游戏

    bzoj 5393 [HAOI2018] 反色游戏 Link Solution 最简单的性质:如果一个连通块黑点个数是奇数个,那么就是零(每次只能改变 \(0/2\) 个黑点) 所以我们只考虑偶数个黑 ...

  2. 【BZOJ5303】[HAOI2018]反色游戏(Tarjan,线性基)

    [BZOJ5303][HAOI2018]反色游戏(Tarjan,线性基) 题面 BZOJ 洛谷 题解 把所有点全部看成一个\(01\)串,那么每次选择一条边意味着在这个\(01\)串的基础上异或上一个 ...

  3. P4494 [HAOI2018]反色游戏

    P4494 [HAOI2018]反色游戏 题意 给你一个无向图,图上每个点是黑色或者白色.你可以将一条边的两个端点颜色取反.问你有多少种方法每个边至多取反一次使得图上全变成白色的点. 思路 若任意一个 ...

  4. 【loj#2524】【bzoj5303】 [Haoi2018]反色游戏(圆方树)

    题目传送门:loj bzoj 题意中的游戏方案可以转化为一个异或方程组的解,将边作为变量,点作为方程,因此若方程有解,方程的解的方案数就是2的自由元个数次方.我们观察一下方程,就可以发现自由元数量=边 ...

  5. [BZOJ5303] [HAOI2018] 反色游戏

    题目链接 LOJ:https://loj.ac/problem/2524 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5303 洛谷:https ...

  6. [BZOJ5303][HAOI2018]反色游戏(Tarjan)

    暴力做法是列异或方程组后高斯消元,答案为2^自由元个数,可以得60分.但这个算法已经到此为止了. 从图论的角度考虑这个问题,当原图是一棵树时,可以从叶子开始唯一确定每条边的选择情况,所以答案为1. 于 ...

  7. Luogu4494 [HAOI2018]反色游戏 【割顶】

    首先发现对于一个联通块有奇数个黑点,那么总体来说答案无解.这个很容易想,因为对每个边进行操作会同时改变两个点的颜色,异或值不变. 然后一个朴素的想法是写出异或方程进行高斯消元. 可以发现高斯消元的过程 ...

  8. 洛谷P4494 [HAOI2018]反色游戏(tarjan)

    题面 传送门 题解 我们先来考虑一个联通块,这些关系显然可以写成一个异或方程组的形式,形如\(\oplus_{e\in edge_u}x_e=col_u\) 如果这个联通块的黑色点个数为奇数,那么显然 ...

  9. [HAOI2018]反色游戏

    [Luogu4494] [BZOJ5303] [LOJ2524] LOJ有数据就是好 原题解,主要是代码参考 对于每一个联通块(n个点),其他的边一开始随便选,只需要n-1条边就可以确定最终结果. 所 ...

随机推荐

  1. javascript 视频播放指定的时间段

    javascript 视频播放指定的时间段 一.html5 vedio: //指定开始时间 player.currentTime=startPoint; player.play(); //使用事件来控 ...

  2. 【题解】 UVa11300 Spreading the Wealth

    题目大意 圆桌旁边坐着\(n\)个人,每个人有一定数量的金币,金币的总数能被\(n\)整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数量相等.您的任务是求出被转手的金币的数量的最小值. ...

  3. 钩子(hook)编程

    一.钩子介绍 1.1钩子的实现机制 钩子英文名叫Hook,是一种截获windows系统中某应用程序或者所有进程的消息的一种技术.下图是windows应用程序传递消息的过程: 如在键盘中按下一键,操作系 ...

  4. Python 集合set()添加删除、交集、并集、集合操作详解

    集合:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次.每个元素的地位都是相同的,元素之间是无序的. 创建集合set python set类是在python的sets模块中,大家现在使 ...

  5. day6学python 生成器迭代器+压缩文件

    生成器迭代器+压缩文件 readme的规范 1软件定位,软件的基本功能2运行代码的方法:安装环境,启动命令3简要的使用说明4代码目录结构说明,更详细点可以说明软件的基本原理5常见问题说明 ====== ...

  6. Java 根据Date计算年龄

  7. CentOS 6.3下Samba服务器的安装与配置【转载】

    本文转载自 园友David_Tang的博客,如有侵权请联系本人及时删除,原文地址: http://www.cnblogs.com/mchina/archive/2012/12/18/2816717.h ...

  8. Bootstrap 基本css样式

    1.标题1级标题<h1> 38px 是默认大小的2.7倍2级标题<h2> 32px 是默认大小的2.25倍3级标题<h3> 24px 是默认大小的1.70倍4级标题 ...

  9. [SCOI2007]最大土地面积(旋转卡壳)

    首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...

  10. django中给ajax提交加上csrf

    代码来自djangoproject网站 在html中的script标签下插入下面代码 在html文档加载时候运行下面代码,并且使用$.ajaxSetup设置ajax每次调用时候传入的数据,$.ajax ...