[bzoj4487][Jsoi2015]染色_容斥原理
染色 bzoj-4487 Jsoi-2015
题目大意:给你一个n*m的方格图,在格子上染色。有c中颜色可以选择,也可以选择不染。求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的颜色必须都出现过。
注释:$1\le n,m,k\le 400$。
想法:显然直接求每个求,我们不难想到容斥原理。
我们用容斥来求出i行不染,j列不染,还剩(n-i)*(m-j)个格子这样我么根据那个容斥原理,先不考虑最后的条件;最后再将最后的信息加上。
可以得到式子。
$\sum\limits_{i=0}^n\sum\limits_{j=0}^m\sum\limits_{c=0}^k(-1)^{i+j+k}C_n^iC_m^jC_c^kk^{(n-i)(m-j)}$
由于n,m,k的范围问题,我们直接暴力组合数+快速幂即可。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
ll c[410][410],before[160010];
int main()
{
int n,m,p;
ll ans=0;
scanf("%d%d%d",&n,&m,&p);
before[0]=c[0][0]=1;
for(int i=1;i<=n||i<=m||i<=p;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
for(int i=0;i<=p;i++)
{
for(int j=1;j<=n*m;j++)before[j]=before[j-1]*(p-i+1)%mod;
for(int j=0;j<=n;j++)
for(int k=0;k<=m;k++)
ans=(ans+c[p][i]*c[n][j]%mod*c[m][k]%mod*before[(n-j)*(m-k)]%mod*((i^j^k)&1?-1:1)+mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
小结:容斥原理好方便啊???!!
[bzoj4487][Jsoi2015]染色_容斥原理的更多相关文章
- BZOJ4487 [Jsoi2015]染色问题
BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- 【bzoj4487】[Jsoi2015]染色问题 容斥原理
题目描述 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 1. 棋盘的每一个小方格既可以染色(染成C种颜色中 ...
- 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k ...
- BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)
逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至 ...
- [BZOJ4487][JSOI2015]染色问题(容斥)
一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^ ...
- 【BZOJ4487】[JSOI2015]染色问题(容斥)
[BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...
- BZOJ_2303_[Apio2011]方格染色 _并查集
BZOJ_2303_[Apio2011]方格染色 _并查集 Description Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好, ...
- B20J_2243_[SDOI2011]染色_树链剖分+线段树
B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...
随机推荐
- C#中数据库备份还原 精简
C#中数据库备份还原 使用前要导入SQLDMO.dll(在com组件中导入Microsoft SQLDMO Object Library即可) /// /// DbOper类,主要应用SQLD ...
- C Tricks(十六)—— 复制字符串
while (*s++ = *t++); // target ⇒ source // 对于 C 语言而言,赋值运算符返回左值
- B1060 [ZJOI2007]时态同步 dfs
两遍dfs,第一遍有点像找重链,第二遍维护答案,每个点维护一个当前深度,然后就没啥了. ps:memset(lst,-1,sizeof(lst));这一句多余的话让我debug半天... 题干: De ...
- Django day08 多表操作 (一) 多表模型创建
多表模型创建分析:1)作者表:一个作者有姓名和年龄2)作者信息表: 有作者就有信息,点击作者的名字可以查询他的电话和地址, 作者表对应作者信息表,所以他们之间是一对一对的关系3)出版社表: 出版社有对 ...
- JS代码放在哪里比较好!
在页面上加上<script></script>只有2个地方:head中,body体中 如果外部的JS文件,在head中加,写页面特效js放在body后面. <html&g ...
- 图的最短路径Dijkstra
#include <stdio.h> #include <string.h> #include <vector> #include <queue> #i ...
- [Luogu2324]八数码难题
抱歉...我可能真的做搜索上瘾了... 还是IDA*,自己看看就好了... 注意一下搜索顺序 #include<cstdio> #include<queue> #include ...
- [Luogu 2331] [SCOI2005]最大子矩阵
[Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...
- 树莓派-USB存储设备自动挂载
简单介绍实现命令行下USB存储设备自动挂载的方法,Linux gnome/kde窗口环境下有移动存储的管理程序,可以实现自动挂载移动存储设备,但是在命令行下 通常需要用mount命令手动挂载USB存储 ...
- windows phone控件
常用控件: 包括: Button控件.CheckBox控件.HyperlinkButton控件.Iamege控件.ListBox控件.PasswordBox控件.ProgressBar控件.Radio ...