[bzoj4487][Jsoi2015]染色_容斥原理
染色 bzoj-4487 Jsoi-2015
题目大意:给你一个n*m的方格图,在格子上染色。有c中颜色可以选择,也可以选择不染。求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的颜色必须都出现过。
注释:$1\le n,m,k\le 400$。
想法:显然直接求每个求,我们不难想到容斥原理。
我们用容斥来求出i行不染,j列不染,还剩(n-i)*(m-j)个格子这样我么根据那个容斥原理,先不考虑最后的条件;最后再将最后的信息加上。
可以得到式子。
$\sum\limits_{i=0}^n\sum\limits_{j=0}^m\sum\limits_{c=0}^k(-1)^{i+j+k}C_n^iC_m^jC_c^kk^{(n-i)(m-j)}$
由于n,m,k的范围问题,我们直接暴力组合数+快速幂即可。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
ll c[410][410],before[160010];
int main()
{
int n,m,p;
ll ans=0;
scanf("%d%d%d",&n,&m,&p);
before[0]=c[0][0]=1;
for(int i=1;i<=n||i<=m||i<=p;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
for(int i=0;i<=p;i++)
{
for(int j=1;j<=n*m;j++)before[j]=before[j-1]*(p-i+1)%mod;
for(int j=0;j<=n;j++)
for(int k=0;k<=m;k++)
ans=(ans+c[p][i]*c[n][j]%mod*c[m][k]%mod*before[(n-j)*(m-k)]%mod*((i^j^k)&1?-1:1)+mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
小结:容斥原理好方便啊???!!
[bzoj4487][Jsoi2015]染色_容斥原理的更多相关文章
- BZOJ4487 [Jsoi2015]染色问题
BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- 【bzoj4487】[Jsoi2015]染色问题 容斥原理
题目描述 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 1. 棋盘的每一个小方格既可以染色(染成C种颜色中 ...
- 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k ...
- BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)
逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至 ...
- [BZOJ4487][JSOI2015]染色问题(容斥)
一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^ ...
- 【BZOJ4487】[JSOI2015]染色问题(容斥)
[BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...
- BZOJ_2303_[Apio2011]方格染色 _并查集
BZOJ_2303_[Apio2011]方格染色 _并查集 Description Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好, ...
- B20J_2243_[SDOI2011]染色_树链剖分+线段树
B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...
随机推荐
- hash哈希
我复习的时候,突然发现没写过hash算法,惊讶!!!赶紧补一下. 把字符串看成base进制的数.Hash值比较就是为了判断是否有相同的字符串.(base是自己定义的大于26的质数,个人认为大一点比较好 ...
- 96.extjs 页面
1.登录js /** * @author sux * @desc 登录 */ Ext.onReady(function(){ Ext.QuickTips.init(); //错误信息显示必须 var ...
- 解决VS2008 开发Wince应用程序项目生成速度慢的问题
最近用VS2008开发Windows Mobile程序,使用C#..NET Compact Framework,发现项目生成速度比较慢.用VS2008打开项目后,开始一段时间生成速度还能忍受,时间一长 ...
- Java多线程技术-Volatile关键字解析
分析volatile关键字可以从这三个方面分析,什么是程序的原子性,什么是程序的可见性,什么是程序的有序性 什么是程序的原子性 以下语句那些是原子操作? public class ThreadCoun ...
- Php.ini文件位置在哪里 Php.ini文件找不到
转载自:http://www.php100.com/html/php/rumen/2013/0831/26.html [导读] Php ini文件是php的一个配置文件,在windows主机中如果你未 ...
- spring - quartz - experssion 表达式
字段 允许值 允许的特殊字符 秒 0-59 , - * / 分 0-59 , - * / 小时 0-23 , - * / 日期 1-31 , - * ? / L W C 月份 1-12 或者 JAN- ...
- 图像局部显著性—点特征(Fast)
fast作为几乎最快的角点检测算法,一般说明不附带描述子.参考综述:图像的显著性检测--点特征 详细内容,请拜访原=文章:Fast特征点检测算法 在局部特征点检测快速发展的时候,人们对于特征的认识也越 ...
- SLAM: Ubuntu14.04_Kylin安装ROS-Indigo
参考连接:ROS-Indigo版在Ubuntu上的安装第一步: 软件源配置 1. 增加下载源(增加ubuntu版的ros数据仓库,即下载源)(通用指令适合任何版本的ros) sudo sh -c 'e ...
- (转)Bootstrap 之 Metronic 模板的学习之路 - (2)源码分析之 head 部分
https://segmentfault.com/a/1190000006684122 下面,我们找个目录里面想对较小的文件来分析一下源码结构,我们可以看到,page_general_help.htm ...
- Shell 环境变量也是变量
跟定义普通变量一样,语法是 变量名=值,只不过这个名字叫 PATH,值是路径 shell PATH=/usr/local/python-2.7.6/bin 导入的话使用export命令 shell e ...