萤火虫算法-python实现
FAIndividual.py
import numpy as np
import ObjFunction class FAIndividual: '''
individual of firefly algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for firefly algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)
FA.py
import numpy as np
from FAIndividual import FAIndividual
import random
import copy
import matplotlib.pyplot as plt class FireflyAlgorithm: '''
The class for firefly algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of [beta0, gamma, alpha]
'''
self.sizepop = sizepop
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = FAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
evolution process of firefly algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while (self.t < self.MAXGEN - 1):
self.t += 1
self.move()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1])) print("Optimal function value is: %f; " %
self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def move(self):
'''
move the a firefly to another brighter firefly
'''
for i in xrange(0, self.sizepop):
for j in xrange(0, self.sizepop):
if self.fitness[j] > self.fitness[i]:
r = np.linalg.norm(
self.population[i].chrom - self.population[j].chrom)
beta = self.params[0] * \
np.exp(-1 * self.params[1] * (r ** 2))
# beta = 1 / (1 + self.params[1] * r)
# print beta
self.population[i].chrom += beta * (self.population[j].chrom - self.population[
i].chrom) + self.params[2] * np.random.uniform(low=-1, high=1, size=self.vardim)
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def printResult(self):
'''
plot the result of the firefly algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Firefly Algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
if __name__ == "__main__":
bound = np.tile([[-600], [600]], 25)
fa = FA(60, 25, bound, 200, [1.0, 0.000001, 0.6])
fa.solve()
ObjFunction见简单遗传算法-python实现。
萤火虫算法-python实现的更多相关文章
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- 【转】Python 列表排序
很多时候,我们需要对List进行排序,Python提供了两个方法 对给定的List L进行排序, 方法1.用List的成员函数sort进行排序 方法2.用built-in函数sorted进行排序(从2 ...
- JavaWeb学习----JSP内置对象详解
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...
- DOTween文档
前言 DOTween现在还处于 alpha,所以还有一些缺失的功能(如路径插件,附加回调和其它的tween选项),这个文档在不久的将来可能会更新. DoTween:0.8.2.00 官方文档:http ...
- Renderer.materials
修改方法 meshBody.renderer.materials[].mainTexture= clothes[]; meshBody.renderer.materials[]=maters[]; 以 ...
- WPF用ShowDialog()弹出窗体时控制该窗体的显示位置,并传值回父窗体
原文:http://blog.csdn.net/kiss0622/article/details/5852153 方法一: 1.父窗口代码 Window1.xaml.cs private void B ...
- 使用c#创建php可以调用的dll
1. 创建一个 C# Class Library ,命名为:ClassLibraryDemo 2. 打开项目的属性,在点选左边的 “Application”(就是第一个tab) , 然后点击 Asse ...
- HDR 拍照模式的原理,实现及应用
转自:http://blog.csdn.net/fulinwsuafcie/article/details/9792189 HDR 拍照: (High Dynamic Range Ima ...
- Python自动化测试 (二) ConfigParser模块读写配置文件
ConfigParser 是Python自带的模块, 用来读写配置文件, 用法及其简单. 直接上代码,不解释,不多说. 配置文件的格式是: []包含的叫section, section 下有op ...
- EBS中使用java进行 JavaConcurrentProgram 请求获取参数
public class MainTest implements JavaConcurrentProgram { //实现interface中的runProgram方法 public void run ...
- log4j输出日志乱码(转)
log4j日志文件乱码问题的解决方法 log4j日志文件中文乱码处理方法 log4j 控制台和文件输出乱码问题解决 写在前面,第三篇文章中将原因解释的最清楚,为什么设置为UTF-8或者GBK就生效了, ...