FAIndividual.py

 import numpy as np
import ObjFunction class FAIndividual: '''
individual of firefly algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for firefly algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

FA.py

 import numpy as np
from FAIndividual import FAIndividual
import random
import copy
import matplotlib.pyplot as plt class FireflyAlgorithm: '''
The class for firefly algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of [beta0, gamma, alpha]
'''
self.sizepop = sizepop
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = FAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
evolution process of firefly algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while (self.t < self.MAXGEN - 1):
self.t += 1
self.move()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1])) print("Optimal function value is: %f; " %
self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def move(self):
'''
move the a firefly to another brighter firefly
'''
for i in xrange(0, self.sizepop):
for j in xrange(0, self.sizepop):
if self.fitness[j] > self.fitness[i]:
r = np.linalg.norm(
self.population[i].chrom - self.population[j].chrom)
beta = self.params[0] * \
np.exp(-1 * self.params[1] * (r ** 2))
# beta = 1 / (1 + self.params[1] * r)
# print beta
self.population[i].chrom += beta * (self.population[j].chrom - self.population[
i].chrom) + self.params[2] * np.random.uniform(low=-1, high=1, size=self.vardim)
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def printResult(self):
'''
plot the result of the firefly algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Firefly Algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
fa = FA(60, 25, bound, 200, [1.0, 0.000001, 0.6])
fa.solve()

ObjFunction见简单遗传算法-python实现

萤火虫算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. vector中pair的排序方法

    直接上代码: bool judge(const pair<int,char> a, const pair<int ,char> b) { return a.first<b ...

  2. 详解Java的MyBatis框架中SQL语句映射部分的编写

    这篇文章主要介绍了Java的MyBatis框架中SQL语句映射部分的编写,文中分为resultMap和增删查改实现两个部分来讲解,需要的朋友可以参考下 1.resultMap SQL 映射XML 文件 ...

  3. 视频会议的3G智能手机移植技术

    现今的视频会议系统已经兼容3G手机等移动终端设备,而3G智能手机使用的操作系统一般与PC的操作系统不一样,其开发环境一般都在PC上进行,通过模拟器在PC上进行手机系统的应用程序开发,而在这些操作系统上 ...

  4. ip routing&no ip routing

    ip routing--------查路由表, 如果ping的目的在RT中没有,不发出任何包(arp也不会发出)   如果RT中存在,则arp  下一跳,相当于no ip routing+配置网关 n ...

  5. C语言 const常量讲解

    //const的本质 //const本质上是伪常量,无法用于数组初始化以及全局变量初始化 //原因在于const仅仅限定变量无法直接赋值,但是却可以通过指针间接赋值 //例如局部常量在栈区,而不在静态 ...

  6. IBatis.Net学习笔记五--常用的查询方式

    在项目开发过程中,查询占了很大的一个比重,一个框架的好坏也很多程度上取决于查询的灵活性和效率.在IBatis.Net中提供了方便的数据库查询方式. 在Dao代码部分主要有两种方式:1.查询结果为一个对 ...

  7. Objective-c文件读取

  8. Java系列: 我的第一个spring aop练习

    看<Spring in action>有一段时间了,陆续也都看懂了,但是看懂和自己动手写确实是两回事,今天花了几个小时陆续开始安装spring,开始使用DI,然后使用AOP,在写AOP例子 ...

  9. [CareerCup] 2.1 Remove Duplicates from Unsorted List 移除无序链表中的重复项

    2.1 Write code to remove duplicates from an unsorted linked list.FOLLOW UPHow would you solve this p ...

  10. JS闭包那些事

    关于闭包,我曾经一直觉得它很讨厌,因为它一直让我很难搞,不过有句话怎么说来着,叫做你越想要一个东西,就要装作看不起它的样子.所以,抱着这个态度,我终于掳获了闭包. 首先来认识一下什么是闭包,闭包,一共 ...