FAIndividual.py

 import numpy as np
import ObjFunction class FAIndividual: '''
individual of firefly algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for firefly algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

FA.py

 import numpy as np
from FAIndividual import FAIndividual
import random
import copy
import matplotlib.pyplot as plt class FireflyAlgorithm: '''
The class for firefly algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of [beta0, gamma, alpha]
'''
self.sizepop = sizepop
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = FAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
evolution process of firefly algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while (self.t < self.MAXGEN - 1):
self.t += 1
self.move()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1])) print("Optimal function value is: %f; " %
self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def move(self):
'''
move the a firefly to another brighter firefly
'''
for i in xrange(0, self.sizepop):
for j in xrange(0, self.sizepop):
if self.fitness[j] > self.fitness[i]:
r = np.linalg.norm(
self.population[i].chrom - self.population[j].chrom)
beta = self.params[0] * \
np.exp(-1 * self.params[1] * (r ** 2))
# beta = 1 / (1 + self.params[1] * r)
# print beta
self.population[i].chrom += beta * (self.population[j].chrom - self.population[
i].chrom) + self.params[2] * np.random.uniform(low=-1, high=1, size=self.vardim)
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def printResult(self):
'''
plot the result of the firefly algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Firefly Algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
fa = FA(60, 25, bound, 200, [1.0, 0.000001, 0.6])
fa.solve()

ObjFunction见简单遗传算法-python实现

萤火虫算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. ZOJ 3659 & HDU 4424 Conquer a New Region (并查集)

    这题要用到一点贪心的思想,因为一个点到另一个点的运载能力决定于其间的边的最小权值,所以先把线段按权值从大到小排个序,每次加的边都比以前小,然后合并集合时,比较 x = findset(a) 做根或 y ...

  2. SVN代码的回滚二

    SVN代码的回滚: 不丢失新建的文件,获得最新的SVN版本控制.TortoiseSVN-ShowLog-选中你要回滚的版本-右键-Export,之后将修改的文件覆盖到你的最新版本,commit即可. ...

  3. 用SqlParameter 给SQL传递参数

    1.数据访问层 using的用法: 01.可以using System;导命名控空间 02.using 的语法结构 using(变量类型  变量名 =new 变量类型()) { } 案例: 03.us ...

  4. java 12 - 5 带有缓冲区的字符流

    字符流为了高效读写,也提供了对应的字符缓冲流. 字符缓冲流:A. BufferedWriter:字符缓冲输出流 B. BufferedReader:字符缓冲输入流 A.BufferedWriter:字 ...

  5. canvas仿屏幕保护运动线条

    canvas是H5中及其重要的一个新标签,它得出现不仅让前端做图形图表功能变得异常强大,还用极强的性能丰富前端渲染页面的能力. Life is not a problem to be solved, ...

  6. 常用excel技巧

    1.excel 设置行列分色显示  =MOD(ROW(),2)=0 2.多表匹配数据 通过身份证在另外一个表查找这个人的基本信息 第一张表 第二张表: =VLOOKUP(F12,'2014总表'!D: ...

  7. 混合语言编程:启用CLR(公共语言运行时编译)让C#调用C++

    前言 关于混合C#和C++的编程方式,本人之前写过一篇博客(参见混合语言编程:C#使用原生的Directx和OpenGL),在之前的博客中,介绍了在C#的Winform和WPF下使用原生的Direct ...

  8. 微软职位内部推荐-Software Engineer II

    微软近期Open的职位: Job Description Group: Search Technology Center Asia (STCA)/Search Ads Title: SDEII-Sen ...

  9. jade 渲染js片段

    script. str = !{JSON.stringify(val)}; res.render('wxpay', {val:result});

  10. C语言 函数理解(以数组做参数)

    #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> int run(int *p){ // ...