1001: [BeiJing2006]狼抓兔子

Time Limit: 15 Sec Memory Limit: 162 MB

Submit: 14686 Solved: 3513

[Submit][Status][Discuss]

Description

现在小朋友们最喜欢的”喜羊羊与灰太狼”,话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦.

Input

第一行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分第一部分共N行,每行M-1个数,表示横向道路的权值. 第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 输入文件保证不超过10M

Output

输出一个整数,表示参与伏击的狼的最小数量.

Sample Input

3 4

5 6 4

4 3 1

7 5 3

5 6 7 8

8 7 6 5

5 5 5

6 6 6

Sample Output

14

HINT

2015.4.16新加数据一组,可能会卡掉从前可以过的程序。

—————————————————华华丽丽的分割线————————————————-

这道题一看就是最小割问题,而由最小割-最大流定理我们可以知道,平面图最小割=平面图最大流=对偶图的最短路

然而我网络流并不是很会,正好这道题最大流会爆,故只能转对偶图跑最短路

先说一下转对偶图的转法:

这里用题目做解释:



将每个三角形看做一个节点,并分别编号1,2….,并设置两个节点,起点S和终点T,将每一条边割开,即连接各个点(三角形),新的边权等于被割掉的边的边权,然后跑SPFA即可

分析得:

对于横行:

1.第一行割开后的点(三角形)都与终点T连边

2.除去第一行和最后一行的其余割开后的两个相邻的点(三角形)连边

3.最后一行的隔开后的点(三角形)都与起点S连边

对于纵行:

1.最左边的纵行割开后与起点S连边

2.除最左最右边的纵行割开后的两个相邻点(三角形)连边

3.最右边的纵行割开后与终点T连边

对于斜行:

1.割开后与相邻两点(三角形)连边

(如上述图所示)

最后跑S到T的最短路即可

—————————————————华华丽丽的分割线————————————————-

代码如下(关于图的转换,各个公式推一下就好,其实不是很麻烦):

/**************************************************************
Problem: 1001
User: DaD3zZ
Language: C++
Result: Accepted
Time:3428 ms
Memory:124324 kb
****************************************************************/ #include<queue>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
bool visit[6000100]={false};
int cnt=0,next[6000100]={0},point[6000100]={0},v[6000100]={0},cost[6000100]={0};
int n,m,s,t;
int dis[6000100];
queue <int>que; void add(int a,int b,int c)
{
next[++cnt]=point[a];
point[a]=cnt;
v[cnt]=b;
cost[cnt]=c;
} int spfa()
{
memset(dis,127,sizeof(dis));
int now,loc;
dis[s]=0;
que.push(s);
visit[s]=true;
while (!que.empty())
{
now=que.front();que.pop();
visit[now]=false;loc=point[now];
while (loc>0)
{
if (dis[v[loc]]>dis[now]+cost[loc])
{
dis[v[loc]]=dis[now]+cost[loc];
if (visit[v[loc]]==false)
{
visit[v[loc]]=true; que.push(v[loc]);
}
}
loc=next[loc];
}
}
return dis[t];
}//裸SPFA int main()
{
scanf("%d%d",&n,&m);
s=0; t=(n-1)*(m-1)*2+1;
for (int i=1; i<=m-1; i++)
{
int x;scanf("%d",&x);
add(i*2,t,x);add(t,i*2,x);
}
for (int i=2; i<=n-1; i++)
for (int j=1; j<=m-1; j++)
{
int x;scanf("%d",&x);
add((i-1)*(m-1)*2+j*2,(i-1)*(m-1)*2+j*2-m*2+1,x);
add((i-1)*(m-1)*2+j*2-m*2+1,(i-1)*(m-1)*2+j*2,x);
}
for (int i=1; i<=m-1; i++)
{
int x;scanf("%d",&x);
add((n-2)*2*(m-1)+i*2-1,s,x);
add(s,(n-2)*2*(m-1)+i*2-1,x);
}
//横行的转换
for (int i=1; i<=n-1; i++)
{
int x; scanf("%d",&x);
add((i-1)*(m-1)*2+1,s,x);
add(s,(i-1)*(m-1)*2+1,x);
for (int j=1; j<=m-2; j++)
{
scanf("%d",&x);
add((i-1)*(m-1)*2+j*2+1,(i-1)*(m-1)*2+j*2,x);
add((i-1)*(m-1)*2+j*2,(i-1)*(m-1)*2+j*2+1,x);
}
scanf("%d",&x);
add((i-1)*(m-1)*2+(m-2)*2+2,t,x);
add(t,(i-1)*(m-1)*2+(m-2)*2+2,x);
}
//竖行的转换
for (int i=1; i<=n-1; i++)
for (int j=1; j<=m-1; j++)
{
int x;scanf("%d",&x);
add((i-1)*(m-1)*2+j*2-1,(i-1)*(m-1)*2+j*2,x);
add((i-1)*(m-1)*2+j*2,(i-1)*(m-1)*2+j*2-1,x);
}
//斜行的转换
int ans=spfa();
printf("%d",ans);
return 0;
}

BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA的更多相关文章

  1. BZOJ 1001 狼抓兔子 (最小割转化成最短路)

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 27715  Solved: 7134[Submit][ ...

  2. BZOJ1001: [BeiJing2006]狼抓兔子 [最小割 | 对偶图+spfa]

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 19528  Solved: 4818[Submit][ ...

  3. bzoj1001: [BeiJing2006]狼抓兔子 -- 最小割

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MB Description 现在小朋友们最喜欢的"喜羊羊与灰太狼 ...

  4. [bzoj1001]狼抓兔子 最小割

    题意概述:给出一张无向图,每条边有一个权值,割掉这条边代价为它的权值,求使起点不能到达终点的最小代价. 显然能看出这是个最小割嘛,然后最小割=最大流,建图的时候特殊处理一下再跑个最大流就好了. #in ...

  5. BZOJ 1001: [BeiJing2006]狼抓兔子 最小割

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓 ...

  6. [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  7. BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...

  8. BZOJ 1001 狼抓兔子 平面图的最小割

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1001 题目大意: 见链接 思路: 求最小割,平面图的最小割等价于对偶图的最短路 直接建 ...

  9. bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...

  10. BZOJ 1001 - 狼抓兔子 - [Dinic最大流][对偶图最短路]

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 Description现在小朋友们最喜欢的"喜羊羊与灰太狼", ...

随机推荐

  1. Ajax读取文件时出现的缓存问题

    对于Ajax缓存问题时,由于浏览器的版本问题,有时候当服务器端已更改文件中的内容,而客户端并得不到更新后的文件,而是延续之前的文件内容,解决办法是:在读取的文件内容后加一串的地址:JSON的格式为[{ ...

  2. 第10章 同步设备I/O和异步设备I/O(4)_利用I/O完成端口实现Socket通信

    I/O完成端口原理见上一篇(可点击这里) 10.5.4.4 利用I/O完成端口实现Socket通信 (1)Accept和AcceptEx流程的比较 ①采用accept方式的流程示意图如下(普通的阻塞函 ...

  3. 3d照片环效果(修改版--添加了x轴y轴双向转动和修复模糊度的bug)

    今天用用前两天总结的css3新效果写了一个3d照片环的效果,其中还有些bug大家可以看一看,一起改进. <!DOCTYPE html> <html lang="en&quo ...

  4. vbs test

    '-----------------------------------Class clsGetProfilePrivate rootDocPublic Sub setProfile(strFileN ...

  5. Java运算符优先级

    序列号 符号 名称 结合性(与操作数) 目数 说明 1 . 点 从左到右 双目 ( ) 圆括号 从左到右   [ ] 方括号 从左到右   2 + 正号 从右到左 单目 - 负号 从右到左 单目 ++ ...

  6. 软件工程(QLGY2015)第二次作业点评(随机挑选20组点评)

    相关博文目录: 第一次作业点评 第二次作业点评 第三次作业点评 说明:随机挑选20组点评,大家可以看看blog名字,github项目名字,看看那种是更好的,可以学习,每个小组都会反应出一些问题,希望能 ...

  7. android官方开源的高性能异步加载网络图片的Gridview例子

    这个是我在安卓安卓巴士上看到的资料,放到这儿共享下.这个例子android官方提供的,其中讲解了如何异步加载网络图片,以及在gridview中高效率的显示图片此代码很好的解决了加载大量图片时,报OOM ...

  8. Jenkins进阶系列之——14配置Jenkins用户和权限

    今天给大家说说使用Jenkins专有用户数据库的配置,和一些常用的权限配置. 配置用户注册 在已运行的Jenkins主页中,点击左侧的系统管理—>Configure Global Securit ...

  9. 发布HTML5 RTS游戏-古代战争

    古代战争 游戏介绍 "古代战争"是一个2.5D即时战略游戏,使用了帝国时代2的素材,并参考了它的游戏设计和玩法. 游戏基于YEngine2D引擎开发,具备生产.建造.资源采集.战斗 ...

  10. webSocket实现web及时聊天的例子

    概述 websocket目前虽然无法普及应用,未来是什么样子,我们不得而知,但现在开始学习应用它,只有好处没有坏处,本随笔的WebSocket是版本13(RFC6455)协议的实现,也是目前webso ...