Gym102028G Shortest Paths on Random Forests 生成函数、多项式Exp
神仙题……
考虑计算三个部分:1、\(n\)个点的森林的数量,这个是期望的分母;2、\(n\)个点的所有森林中存在最短路的点对的最短路径长度之和;3、\(n\)个点的所有路径中存在最短路的点对的个数之和,这个是用来计算需要取到\(m\)的点对的数量。
对于1,这个就直接对着树的数量的EGF做多项式exp即可。因为点之间有序所以用EGF,\(n\)个点的树的数量由Cayley定理就是\(n^{n-2}\)。
对于3,考虑枚举一个连通块大小,那么这种连通块大小的所有树的存在最短路的点对之和就是\(n^{n-2} \binom{n}{2}\)。然后我们需要求这个连通块在哪些森林中出现过,我们就需要拼一个森林进去,所以直接拿这个的EGF跟1中求出来的多项式做一个卷积就可以了。
对于2,发现那个平方不是很好搞,于是可以考虑平方的组合意义,实际上就是在\(i,j\)路径上的边上有序地任取两条边。我们可以考虑先枚举两条边,然后再考虑这两条边会在哪些路径上做出贡献。注意到两条不重合的边会把树分为三个连通块,而两条重合的边会分为两个连通块,那么我们可以再次交换求和顺序,先枚举两个/三个连通块,然后考虑如何在这两个/三个连通块之间连边、选择\(i,j\)。
考虑三个连通块的情况,两个连通块的情况类似。注意到如果三个连通块大小为\(a_1,a_2,a_3\),边固定为1连向2、2连向3,\(i\)在1、\(j\)在3,那么连边的方式就有\(a_1a_2 \times a_2a_3\)种,选择起点的方式有\(a_1\)种,选择终点的方式有\(a_3\)种,那么总贡献就是\(a_1^2a_2^2a_3^2\),只和连通块大小有关。不难再构造一个生成函数,每个位置表示大小为\(x\)的连通块的贡献,那么这个生成函数的平方和三次方就是选择两个连通块和三个连通块的方案。
那么我们就只要考虑这个连通块会出现在哪些森林里,和3过程一样卷上1求出来的多项式就可以了。
值得注意的一点是,求2的过程中,因为有序枚举这两条边是存在两种方案的,所以选择三个连通块的所有方案需要乘上2;在求2的过程中,点对\(i,j\)和点对\(j,i\)都会被计算,所以2的所有答案还要除以2。
Gym102028G Shortest Paths on Random Forests 生成函数、多项式Exp的更多相关文章
- CF Gym102028G Shortest Paths on Random Forests
传送门 这题要求的期望,就是总权值(所有不在同一个连通块点对的贡献+同一连通块点对的贡献)/总方案(森林个数) 先求森林个数,森林是由一堆树组成的,而根据purfer序列,一棵\(n\)个点的有标号的 ...
- CF Gym 102028G Shortest Paths on Random Forests
CF Gym 102028G Shortest Paths on Random Forests 抄题解×1 蒯板子真jir舒服. 构造生成函数,\(F(n)\)表示\(n\)个点的森林数量(本题都用E ...
- Luogu4389 付公主的背包(生成函数+多项式exp)
显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv).将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi).但这个多项式的项数是Σ ...
- LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)
题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100 ...
- LuoguP4389 付公主的背包【生成函数+多项式exp】
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...
- P4389-付公主的背包【生成函数,多项式exp】
正题 题目链接:https://www.luogu.com.cn/problem/P4389 题目大意 \(n\)种物品,第\(i\)种大小为\(v_i\),数量无限.对于每个\(s\in[1,m]\ ...
- Bagging决策树:Random Forests
1. 前言 Random Forests (RF) 是由Breiman [1]提出的一类基于决策树CART的Bagging算法.论文 [5] 在121数据集上比较了179个分类器,效果最好的是RF,准 ...
- 以Random Forests和AdaBoost为例介绍下bagging和boosting方法
我们学过决策树.朴素贝叶斯.SVM.K近邻等分类器算法,他们各有优缺点:自然的,我们可以将这些分类器组合起来成为一个性能更好的分类器,这种组合结果被称为 集成方法 (ensemble method)或 ...
- 随机森林——Random Forests
[基础算法] Random Forests 2011 年 8 月 9 日 Random Forest(s),随机森林,又叫Random Trees[2][3],是一种由多棵决策树组合而成的联合预测模型 ...
随机推荐
- 什么是uni-app?
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS.Android.H5.以及各种小程序(微信/支付宝/百度/头条/QQ/钉钉)等多个平台. 即使不跨 ...
- 什么是 Kafka Rebalance 以及关于 Rebalance Kafka-Python 社区客户端应该关注的地方
什么是 Rebalance? Rebalance 为什么会发生?Rebalance 的情况下 consumer 是否还能正确消费消息呢? 记得之前在一段时间密集面试的时候总会问候选人这些问题. 重平衡 ...
- com.netflix.client.ClientException: Load balancer does not have available server for client:xxx
重启一个web模块,刷新页面报错, 负载均衡器没有可用的服务器给客户端:在网关添加. ribbon: eureka: enabled: true
- MSSQL 数据库复制脚本
--新表存在复制数据 insert into 新表 (字段) select 字段 from 旧表 -- 新表不存在复制数据 select * into 新表 from 旧表
- docker容器启动后添加端口映射
DOCKER 给运行中的容器添加映射端口 方法1 1.获得容器IP 将container_name 换成实际环境中的容器名 docker inspect `container_name` | grep ...
- Qt中文编码和QString类Unicode编码转换
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/g423tgl234/article ...
- JAVA:使用栈实现一个队列
使用栈实现一个队列,需要弄清楚栈和队列的区别: 栈:先进后出: 队列:先进先出. 实现思路: 1)通过两个栈(pushStack / popStack)对倒,确保 popStack 栈的出栈顺序与队列 ...
- 单细胞数据整合方法 | Comprehensive Integration of Single-Cell Data
操作代码:https://satijalab.org/seurat/ 依赖的算法 CCA CANONICAL CORRELATION ANALYSIS | R DATA ANALYSIS EXAMPL ...
- SpringBoot——读取配置文件@Value和@Configuration比较
1.@Configuration package com.xgcd.springboot.bean; import org.springframework.boot.context.propertie ...
- 微信小程序上传单张或多张图片
-- chooseImage: function () { let that = this; let worksImgs = that.data.worksImgs; let len = that.d ...