原题链接

DOWNLOAD AS PDF

题目大意

\(0\sim m-1\)的数被分成两个集合,你可以分别从两个集合中取一个数相加并对\(m\)取模,求一不能构造出的数。

题解

感觉如果\(\color{black}\sf{s}\color{red}\sf{xd666}\)来做这题肯定能一眼秒,然而他正忙着切其他题。

首先我们发现如果要让\(a + b \equiv x \pmod m\),如果已知\(a, x\),那\(b\)一定是唯一的。也就是说,假设给定集合是\(A\),与之对应的集合为\(B\),如果有\(a\in A\)但找不到\(b\in A\)使得\(a + b \equiv x\pmod m\)。那么\(x\in A + B\)(定义\(A + B = \{a + b : a\in A, b\in B\}\))。反过来讲,如果\(x\notin A + B\),那么一定能把\(A\)中所有元素配对(可能两个数相同),也即\(x\notin A + B \iff A = x - A\)(定义\(x - A= \{x - a : a\in A\}\))。

然后我们如果把小于\(m\)的整数看成一个环,如果有两个数\(a, b\)使\(a + b \equiv x \pmod m\),\(a\)顺时针时针移动,\(b\)肯定逆时针移动(即运动方向相反,且移动的长度应该是相等的(\((a + k)\mod m + (b - k)\mod m \equiv a + b \pmod m\)嘛)。

于是我们画两个圆,都表示集合\(\{a_i\}\)(假设\(a_i\)已经排好序),我们要把第一个圆的点与第二个圆的点匹配。

假设\(a_i\)与\(a_j\)匹配。我们把\(i\)移动至\(i+1\),那么根据上面推出的单调性,\(j\)必须移至\(j-1\)(因为\(a_i\sim a_{i+1}\)之间没有数了,所以\(j\)也只能移动一格),又因为移动距离必须相等,即\(a_{i+1} - a_i = a_j - a_{j-1}\)。

所以我们令\(b_i = a_{i} - a_{i-1}\)(\(b_1 = (a_1 - a_n)\mod m\)),设串\(s_1 = b_nb_{n-1}b_{n-2}\cdots b_1, s_2 = b_1b_2b_3\cdots b_n\),我们要找的是\(s_1\)与\(s_2\)成环后相等,并找到一对匹配的数,他们加起来模\(m\)即为一组解。我们令\(s_3 = s_2 + s_2\),找到\(s_3\)中所有等于\(s_1\)的子串,就得到了所有解,这个问题用KMP或是Z都能解决。

还是贴一下代码吧:

#include <cstdio>
#include <set>
#include <vector>
#include <iostream>
#include <algorithm> using namespace std; typedef long long LL; const int maxn = 200005; LL aa[maxn]; // 读入的a
LL bb[maxn]; // 即上面说的b
vector<LL> gou;
int in[maxn << 2];
LL Z[maxn << 2];
set<LL> ans; int main()
{
int n;
LL m;
scanf("%d%lld", &n, &m);
for(int i = 1; i <= n; ++i)
scanf("%lld", &aa[i]);
bb[1] = ((aa[1] - aa[n]) + m) % m;
for(int i = 2; i <= n; ++i)
bb[i] = ((aa[i] - aa[i-1]) % m + m) % m;
for(int i = n; i; --i) // 这里用的是Z算法,所以合并成了一个串
{
gou.push_back(bb[i]);
in[gou.size() - 1] = i;
}
gou.push_back(-1LL);
for(int i = 1; i <= n; ++i)
{
gou.push_back(bb[i]);
in[gou.size() - 1] = i;
}
for(int i = 1; i <= n; ++i)
{
gou.push_back(bb[i]);
in[gou.size() - 1] = i;
}
Z[0] = gou.size();
for(int i = 1, j = 1, k; i < (int) gou.size(); i = k) // Z算法
{
j = max(j, i);
while(gou[j] == gou[j - i])
++j;
Z[i] = j - i;
k = i + 1;
while(k + Z[k - i] < j)
{
Z[k] = Z[k - i];
++k;
}
}
for(int i = 1; i < (int) gou.size(); ++i)
if(Z[i] >= n) // 大力记录答案
ans.insert((aa[in[i] - 1 ? in[i] - 1 : n] + aa[n]) % m);
printf("%d\n", (int) ans.size());
for(auto it = ans.begin(); it != ans.end(); ++it)
printf("%lld ", *it);
return 0;
}

CF1045B Space Isaac的更多相关文章

  1. CF1045B Space Isaac(乱搞)

    翻译 有0~m-1的数被分成了两个集合每次你可以从两个集合中任取一个数做加法并对m取模问最后0~m-1中不能被组合出来的数有多少个会给出你A集合 大小不超过200000m<=1e9 完了题解都看 ...

  2. Codeforces 1045B Space Isaac

    Space Isaac 我们定义第一个集合为a, 第二个集合为b 先把a数组排序, 然后我们会以线段的形式得到b集合. 我们先用a[ 1 ]去和 b 中的元素结合, 只有size(a) 个数字未被覆盖 ...

  3. codeforces1045B Space Isaac 【manacher】【差分】

    题目大意: 题目是将$[0,m)$的数划成了两个集合,其中一个集合的元素个数不超过$n$.问在第一个集合中选出的数加上第二个集合中选出的数的和中没有出现的数有哪些. 题目分析: 很有意思的一道题.方便 ...

  4. Codeforces 1045B Space Isaac - 数论 - Hash

    题目传送门 传送门I 传送门II 传送门III 题目大意 给定将$\left \{ 0, 1, \dots, m - 1\right \}$分成了不相交的两个非空集合$A$和$B$,给定$A$,问存在 ...

  5. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  6. 【做题】CF1045(ABH)

    原文链接https://www.cnblogs.com/cly-none/p/9697662.html 题目当然不会做完了,这里只讲有做&会做的. A. Last chance 题意:有\(n ...

  7. codeforce1046 Bubble Cup 11 - Finals 题解

    比赛的时候开G开了3h结果rose说一句那唯一一个AC的是羊的心态就崩了.. 这套题感觉质量挺好然后就back了下 A: AI robots 有三个限制条件:相互能够看见和智商的差.使用主席树,可以维 ...

  8. Bubble Cup 11 - Finals [Online Mirror, Div. 1]题解 【待补】

    Bubble Cup 11 - Finals [Online Mirror, Div. 1] 一场很好玩的题啊! I. Palindrome Pairs 枚举哪种字符出现奇数次. G. AI robo ...

  9. java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出

    上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...

随机推荐

  1. KPConv针对Modelnet40的分类

    1. 训练样本airplane_0001.txt的可视化: 飞机尺度: 物体类别与对应标签: 2. 对训练样本进行降采样: 体素法降采样,降采样的网络大小设置为0.02m.在pycharm下面的Con ...

  2. 小程序setData()使用和注意事项

    注意: 直接修改this.data,而不调用this.setData(),是无法改变当前页面的状态的,会导致数据不一致 仅支持可以JSON化的数据 单次设置的数据不能超过1024KB,尽量避免一次设置 ...

  3. leetcode 236. 二叉树的最近公共祖先LCA(后序遍历,回溯)

    LCA(Least Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先. 百度百 ...

  4. 如何编写一个 SendFile 服务器

    如何编写一个 SendFile 服务器 前言 之前讨论零拷贝的时候,我们知道,两台机器之间传输文件,最快的方式就是 send file,众所周知,在 Java 中,该技术对应的则是 FileChann ...

  5. win10 x64 VS2017 PJSIP 视频通话编译流程

    win10 x64 VS2017 PJSIP 视频通话编译流程 1. 下载PJSIP源码 PJSIP源码下载地址:https://www.pjsip.org/ 2. 阅读一遍官方的文档 文档地址:ht ...

  6. 物联网架构成长之路(45)-容器管理平台Rancher

    0.前言 按照上一篇博客,我已经把需要下载的rancher docker 依赖镜像下载上传到Harbor了. 1. 安装 执行如下,实现一键安装 docker run -d --restart=unl ...

  7. python asyncio 使用ThreadPoolExecutor和asyncio完成阻塞IO请求

    #使用多线程:在协程中集成阻塞io import asyncio from concurrent.futures import ThreadPoolExecutor import socket fro ...

  8. 个性化你的 Git Log 的输出格式

    个性化你的 Git Log 的输出格式

  9. kali渗透综合靶机(十一)--BSides-Vancouver靶机

    kali渗透综合靶机(十一)--BSides-Vancouver靶机 靶机下载地址:https://pan.baidu.com/s/1s2ajnWHNVS_NZfnAjGpEvw 一.主机发现 1.n ...

  10. War 包部署

    Springboot 进行war包部署,以及踩坑历险!!! https://www.jianshu.com/p/4c2f27809571 Springboot2项目配置(热部署+war+外部tomca ...