转自:https://blog.csdn.net/m_buddy/article/details/78887248

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/m_buddy/article/details/78887248
1. 前言
现在手中只有一张图像需要在一个集合中去找到与之最相近的那一张,这个过程实际是一个匹配的过程,特别是在多模态医学图像中解决这样的问题是比较迫切的,今年试验了一种广泛使用的算法——感知哈希算法!具体的实验结果将在下文中给出。

2. 算法原理
step1:缩小图片尺寸
将图片缩小到8x8的尺寸, 总共64个像素. 这一步的作用是去除各种图片尺寸和图片比例的差异, 只保留结构、明暗等基本信息。

step2:转为灰度图片
将缩小后的图片, 转为64级灰度图片。

step3:计算灰度平均值
计算图片中所有像素的灰度平均值
step4:比较像素的灰度
将每个像素的灰度与平均值进行比较, 如果大于或等于平均值记为1, 小于平均值记为0。
step5:计算哈希值
将上一步的比较结果, 组合在一起, 就构成了一个64位的二进制整数, 这就是这张图片的指纹。
step6:对比图片指纹
得到图片的指纹后, 就可以对比不同的图片的指纹, 计算出64位中有多少位是不一样的. 如果不相同的数据位数不超过5, 就说明两张图片很相似, 如果大于10, 说明它们是两张不同的图片。

3. Python实现
# -*- coding=utf-8 -*-
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

# extract feature
# lines: src_img path
def Extra_Featrue(lines, new_rows=64, new_cols=64):
for name in lines:
ori_img = Image.open(name.strip())
feature_img = ori_img.resize((new_rows, new_cols))
feature_img = feature_img.convert('L')
mean_value = np.mean(np.mean(feature_img))
feature = feature_img >= mean_value
feature = np.matrix(feature, np.int8)
if 'features' in locals():
temp = np.reshape(feature, (1, new_cols * new_rows))
features = np.vstack([features, temp])
else:
features = np.matrix(np.reshape(feature, (1, new_cols * new_rows)))

return features

# use MRI image features to find candidate CT images
def MRIFindCT(mri_feature, mri_lines, ct_feature, ct_lines):
for i in np.arange(0, np.shape(mri_feature)[0]):
dist = []
mri = mri_feature[i, :]
for j in np.arange(0, np.shape(ct_feature)[0]):
ct = ct_feature[j, :]
temp = mri != ct
sum = np.sum(temp)
dist.append(sum)
# find minimum while ignoring the zeros on the diagonal
index = np.argsort(dist)
img1_path = mri_lines[i]
img2_path = ct_lines[index[1]]
img3_path = ct_lines[index[2]]
img4_path = ct_lines[index[3]]
img1 = Image.open(img1_path)
img2 = Image.open(img2_path)
img3 = Image.open(img3_path)
img4 = Image.open(img4_path)
plt.subplot(2, 2, 1)
plt.imshow(img1)
plt.title('MRI Image(%s)' % img1_path[img1_path.__len__() - 10:])
plt.axis('off')
plt.xlabel(img1_path[img1_path.__len__() - 10:])
plt.subplot(2, 2, 2)
plt.imshow(img2)
plt.title('Candidate CT Image1(%s)' % img2_path[img2_path.__len__() - 10:])
plt.axis('off')
plt.xlabel(img2_path[img2_path.__len__() - 10:])
plt.subplot(2, 2, 3)
plt.imshow(img3)
plt.title('Candidate CT Image2(%s)' % img3_path[img3_path.__len__() - 10:])
plt.axis('off')
plt.xlabel(img3_path[img3_path.__len__() - 10:])
plt.subplot(2, 2, 4)
plt.imshow(img4)
plt.title('Candidate CT Image3(%s)' % img4_path[img4_path.__len__() - 10:])
plt.axis('off')
plt.xlabel(img4_path[img4_path.__len__() - 10:])
plt.show()

# set data source
src_path = './1794-MR/MR.txt' # *.txt file contain MRI images
dst_path = './1794-CT/CT.txt' # *.txt file contain CT images
mri_lines = [line.strip() for line in open(src_path)]
ct_lines = [line.strip() for line in open(dst_path)]

# extract feature
set_size = 8
mri_feature = Extra_Featrue(mri_lines, set_size, set_size)
ct_feature = Extra_Featrue(ct_lines, set_size, set_size)

# use feature to find candidate img
MRIFindCT(mri_feature, mri_lines, ct_feature, ct_lines)

4. 结果
上面已经将算法的原理介绍了,很简单实现起来也很容易。这里给出几幅实验的结果作为参考
case1:

case2:

从结果可以看到在一些图片中匹配的效果并不是很好,应该是抽取的特征致使匹配的结果出现偏差
————————————————
版权声明:本文为CSDN博主「m_buddy」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m_buddy/article/details/78887248

感知哈希算法——Python实现【转】的更多相关文章

  1. 感知哈希算法 python 3.4

    #!/usr/bin/python # -*- coding: UTF-8 -*- #Less than 10 add to list and sort import glob import os i ...

  2. 感知哈希算法的java实现

    一.原理讲解      实现这种功能的关键技术叫做"感知哈希算法"(Perceptual Hash Algorithm), 意思是为图片生成一个指纹(字符串格式), 两张图片的指纹 ...

  3. 谷歌百度以图搜图 "感知哈希算法" C#简单实现

    /// <summary> /// 感知哈希算法 /// </summary> public class ImageComparer { /// <summary> ...

  4. Iconfinder 如何杜绝盗版,哈希算法检测图像重复

    原地址:http://blog.jobbole.com/65914/ 本文由 伯乐在线 - 小鱼 翻译自 Silviu Tantos.欢迎加入技术翻译小组.转载请参见文章末尾处的要求. [伯乐在线导读 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 2. Java程序的运行机制

    一.完成一个Java程序的流程:编辑Java源代码→编译Java程序→运行Java程序 1. 在记事本中编写Java程序,然后保存为.java类型文件(Java源文件) 2. 使用javac命令将源文 ...

  2. 单臂路由和VLAN-IF

    前几日有同学在韩老师的会员群里面提了这样一个问题: 有个问题搞半天没弄明白,我在核心交换机上划分了几个vlan,其中一个端口与防火墙相连,防火墙配置为192.168.100.1/30,核心交换机上连接 ...

  3. sql 代码优化

    1. where 执行顺序:右→左,筛选多的放右边:计算难度小的放右边,sql老版本(只在基于规则的优化器中有效,新版本基于代价不存在这个问题): 2. 少用子查询: 3. union快,表结构得一致 ...

  4. Conda和Python的国内安装源

    Conda和Python的国内安装源 Windows系统: 更换python国内源的方法. 在"C:\Users[xxxx]\pip\pip.ini"文件中配置如下内容(没有则新建 ...

  5. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

  6. docker 通过中间镜像加速部署

    概要 实施 修改前的实施时间 制作编译用的镜像 测试修改后的实施时间 概要 使用 docker 打包镜像的时候, 每次耗费时间最多的就是 docker build 的过程. 特别是对于前端工程的打包, ...

  7. Linux shell自动读mongo数据、远程获取文件大小示例脚本

    1.示例1 功能:对mongoDB导出数据,根据sid的不同状态进行统计 技术点:shell bash  读写文件.字符串截取.函数.用多个文件提到的map.grep查找并赋值给变量 #!/bin/b ...

  8. 按照官网的升级完socket.io报错Manager is being released。

    查阅了很多资料和英文官网自己也提出了一些问题,估计官网以前有该类的问题历史,懒得回复. 终于功夫不负有心人原因竟然是:你的manager被释放了. you need to make sure the ...

  9. Springboot如何打包部署项目

    原文地址 目录 前言 1. 导入插件 2.idea中快速打包 3.java –jar运行项目 4.访问项目 5.发布到服务器 前言 用心写好每一篇文章,真心对待每一个读者 文章首发地址: www.ja ...

  10. 【译】.NET Core 是 .NET 的未来

    为什么要翻译咧,.NET 5 都宣布在 .NET Core 之后发布咯,何不再给 .NET Core 打打鸡血,我这个 .NET Core 的死忠粉. 原文:<.NET Core is the ...