论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
2019-03-19 16:13:18
Paper:https://openreview.net/forum?id=HylVB3AqYm
Code:https://github.com/MIT-HAN-LAB/ProxylessNAS
1. Background and Motivation:
先来看看算法的名字:ProxylessNAS,将其拆分之后是这么个意思: Proxy(代理)Less(扣除)NAS(神经结构搜索),难么很自然的就可以读懂了:不用代理的神经网络搜索。那么问题来了,什么是代理呢?这就要提到本文的动机:NAS 可以自动设计有效的网络结构,但是由于前期所提出算法计算量太大,难以在大型任务上执行搜索。于是,出现了可微分的NAS,大大的降低了 GPU 的运算时间,但是也有一个需要较大 GPU memory 消耗的问题(grow linearly w.r.t. candidate set size)。所以,这些算法就只能在 proxy task 上,例如在较小的数据集上训练,或者仅用几个 blocks 进行学习,或者仅仅训练几个 epoch。这就可能引出如下的问题,算法在小数据上的搜索出来的模型,可能在 target task 上并不是最优的。所以,本文就提出 ProxylessNAS 来直接在 large-scale target tasks 或者 目标硬件平台上进行结构的学习。

本文作者将 NAS 看做是 path-level pruning process,特别的,我们直接训练一个 over-parameterized network,其包含所有的候选路径(如图 2 所示)。在训练过程中,我们显示的引入结构化参数来学习哪条路径是冗余的,这些冗余的分支在训练的最后,都被移除,以得到一个紧凑的优化结构。通过这种方式,在结构搜索过程中,我们仅仅需要训练一条网络,而不需要任何其他的 meta-controller (or hypernetwork)。
但是简单的将所有的候选路径都包含进来,又会引起 GPU 显存的爆炸,因为显存的消耗是和 选择的个数,呈现线性增长的关系。所以,GPU memory-wise,我们将结构参数进行二值化(1 或者 0),并且强制仅仅有一条路径,在运行时,可以被激活。这样就将显存需求将为了与训练一个紧凑的模型相当的级别。我们提出一种基于 BinaryConnect 的基于梯度的方法来训练二值化参数。此外,为了处理不可微分的硬件目标,如 latency,在特定的硬件上,来学习特定的网络结构。我们将 network latency 建模成连续的函数,并且将其作为正则化损失来进行优化。另外,我们也提出 REINFORCE-based algorithm 作为另外一种策略来处理硬件度量。

2. Method:
作者首先描述了 over-parameterized network 的构建,然后引入如何利用 binarized architecture parameters 来降低显存消耗。然后提出一种基于梯度的方法,来训练这些 binarized architecture parameters。最终,提出两种基础来处理不可微分的目标(e.g. latency),使其可以在特定的硬件上处理特定的神经网络。
2.1 Construction of Over-Parameterized Network:
==
论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware的更多相关文章
- 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...
- 论文笔记:Progressive Neural Architecture Search
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...
- 论文笔记系列-Efficient Neural Architecture Search via Parameter Sharing
Summary 本文提出超越神经架构搜索(NAS)的高效神经架构搜索(ENAS),这是一种经济的自动化模型设计方法,通过强制所有子模型共享权重从而提升了NAS的效率,克服了NAS算力成本巨大且耗时的缺 ...
- 论文笔记:DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...
- 论文笔记系列-DARTS: Differentiable Architecture Search
Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...
- 论文笔记:Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation
Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation ...
- 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...
- (转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS
Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in ...
- 论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...
随机推荐
- 《PHP内核剖析 - 变量/内存管理》
本文总结自: <PHP7 内核剖析 - 变量的内部实现> 一:变量的实现 - 变量是一个语言实现的基础. - 在PHP中,变量的组成部分为 变量名(zval) 变量值(zend_value ...
- eclipse 遇到的问题及解决思路
招黑的我和eclipse相冲,莫名其妙出现一堆问题.现在打算不定时更新把我遇到的问题更上来,解决方法也附上,不一定适用以后遇到的问题,可以是提供一种解决问题的思路. 1.eclipse配置问题(jar ...
- python range的用法小题
题目(1)for i in range(10): print(i) 结果:123456789 题目(2) for lst in range(100): if lst % 7 == 0 and str( ...
- 【Vagrant】-NO.130.Vagrant.1 -【Vagrant】
Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...
- 潜在风险的频次vs潜在风险的严重影响的程度(以及恢复)
潜在风险的频次vs潜在风险的严重影响的程度 海量数据的存储对于海量数据,不要存在这样的侥幸心理,一定要好好设计你的系统.把数据增长后存储的影响降到最低.面对海量数据,鸡肋的设计必然会导致系统的崩溃. ...
- windows下复制文件报错“文件名对目标文件夹可能过长 。您可以缩短文件名并重试,或者......”
我将一个路径下文件夹复制到另一个路径下时,出现了报错,报错图片如下: 然后查资料发现: 1.文件名长度最大为255个英文字符,其中包括文件扩展名在内.一个汉字相当于两个英文字符.2.文件的全路径名长度 ...
- [LeetCode] 115. Distinct Subsequences_ Hard tag: Dynamic Programming
Given a string S and a string T, count the number of distinct subsequences of S which equals T. A su ...
- Oracle 10046
[10046 SQL]conn username/passwordalter session set tracefile_identifier = 'id_10046';alter session s ...
- GBDT总结
一.简介 gbdt全称梯度下降树,在传统机器学习算法里面是对真实分布拟合的最好的几种算法之一,在前几年深度学习还没有大行其道之前,gbdt在各种竞赛是大放异彩.原因大概有几个,一是效果确实挺不错.二是 ...
- 关于delete请求,后台接收不到数据
在前端用axios需要这样写 /** * 删除数据 */export function del(url, data = {}) { return axios.delete(url, { data: q ...