【Hadoop】Hadoop MR 自定义分组 Partition机制
1、概念
2、Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理
3、代码示例
FlowBean
package com.ares.hadoop.mr.flowgroup; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class FlowBean implements WritableComparable<FlowBean>{
private String phoneNum;
private long upFlow;
private long downFlow;
private long sumFlow; public FlowBean() {
// TODO Auto-generated constructor stub
}
// public FlowBean(String phoneNum, long upFlow, long downFlow, long sumFlow) {
// super();
// this.phoneNum = phoneNum;
// this.upFlow = upFlow;
// this.downFlow = downFlow;
// this.sumFlow = sumFlow;
// } public String getPhoneNum() {
return phoneNum;
} public void setPhoneNum(String phoneNum) {
this.phoneNum = phoneNum;
} public long getUpFlow() {
return upFlow;
} public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
} public long getDownFlow() {
return downFlow;
} public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
} public long getSumFlow() {
return sumFlow;
} public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
} @Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
phoneNum = in.readUTF();
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
} @Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
out.writeUTF(phoneNum);
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
} @Override
public String toString() {
return "" + phoneNum + "\t" + upFlow + "\t" + downFlow + "\t" + sumFlow;
} @Override
public int compareTo(FlowBean o) {
// TODO Auto-generated method stub
return sumFlow>o.getSumFlow()?-:;
} }
FlowGroup
package com.ares.hadoop.mr.flowgroup; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger; import com.ares.hadoop.mr.exception.LineException;
import com.ares.hadoop.mr.flowgroup.FlowBean;; public class FlowGroup extends Configured implements Tool {
private static final Logger LOGGER = Logger.getLogger(FlowGroup.class);
enum Counter {
LINESKIP
} public static class FlowGroupMapper extends Mapper<LongWritable, Text,
Text, FlowBean> {
private String line;
private int length;
private final static char separator = '\t'; private String phoneNum;
private long upFlow;
private long downFlow;
//private long sumFlow; private Text text = new Text();
private FlowBean flowBean = new FlowBean(); @Override
protected void map(
LongWritable key,
Text value,
Mapper<LongWritable, Text, Text, FlowBean>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//super.map(key, value, context);
String errMsg;
try {
line = value.toString();
String[] fields = StringUtils.split(line, separator);
length = fields.length;
if (length != ) {
throw new LineException(key.get() + ", " + line + " LENGTH INVALID, IGNORE...");
} phoneNum = fields[];
upFlow = Long.parseLong(fields[length-]);
downFlow = Long.parseLong(fields[length-]);
//sumFlow = upFlow + downFlow; text.set(phoneNum);
flowBean.setPhoneNum(phoneNum);
flowBean.setUpFlow(upFlow);
flowBean.setDownFlow(downFlow);
//flowBean.setSumFlow(sumFlow); context.write(text, flowBean);
} catch (LineException e) {
// TODO: handle exception
LOGGER.error(e);
System.out.println(e);
context.getCounter(Counter.LINESKIP).increment();
return;
} catch (NumberFormatException e) {
// TODO: handle exception
errMsg = key.get() + ", " + line + " FLOW DATA INVALID, IGNORE...";
LOGGER.error(errMsg);
System.out.println(errMsg);
context.getCounter(Counter.LINESKIP).increment();
return;
} catch (Exception e) {
// TODO: handle exception
LOGGER.error(e);
System.out.println(e);
context.getCounter(Counter.LINESKIP).increment();
return;
}
}
} public static class FlowGroupReducer extends Reducer<Text, FlowBean,
FlowBean, NullWritable> { private FlowBean flowBean = new FlowBean(); @Override
protected void reduce(
Text key,
Iterable<FlowBean> values,
Reducer<Text, FlowBean, FlowBean, NullWritable>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//super.reduce(arg0, arg1, arg2);
long upFlowCounter = ;
long downFlowCounter = ; for (FlowBean flowBean : values) {
upFlowCounter += flowBean.getUpFlow();
downFlowCounter += flowBean.getDownFlow();
}
flowBean.setPhoneNum(key.toString());
flowBean.setUpFlow(upFlowCounter);
flowBean.setDownFlow(downFlowCounter);
flowBean.setSumFlow(upFlowCounter + downFlowCounter); context.write(flowBean, NullWritable.get());
}
} @Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
String errMsg = "FlowGroup: TEST STARTED...";
LOGGER.debug(errMsg);
System.out.println(errMsg); Configuration conf = new Configuration();
//FOR Eclipse JVM Debug
//conf.set("mapreduce.job.jar", "flowsum.jar");
Job job = Job.getInstance(conf); // JOB NAME
job.setJobName("FlowGroup"); // JOB MAPPER & REDUCER
job.setJarByClass(FlowGroup.class);
job.setMapperClass(FlowGroupMapper.class);
job.setReducerClass(FlowGroupReducer.class); // JOB PARTITION
job.setPartitionerClass(FlowGroupPartition.class); // JOB REDUCE TASK NUMBER
job.setNumReduceTasks(); // MAP & REDUCE
job.setOutputKeyClass(FlowBean.class);
job.setOutputValueClass(NullWritable.class);
// MAP
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class); // JOB INPUT & OUTPUT PATH
//FileInputFormat.addInputPath(job, new Path(args[0]));
FileInputFormat.setInputPaths(job, args[]);
FileOutputFormat.setOutputPath(job, new Path(args[])); // VERBOSE OUTPUT
if (job.waitForCompletion(true)) {
errMsg = "FlowGroup: TEST SUCCESSFULLY...";
LOGGER.debug(errMsg);
System.out.println(errMsg);
return ;
} else {
errMsg = "FlowGroup: TEST FAILED...";
LOGGER.debug(errMsg);
System.out.println(errMsg);
return ;
} } public static void main(String[] args) throws Exception {
if (args.length != ) {
String errMsg = "FlowGroup: ARGUMENTS ERROR";
LOGGER.error(errMsg);
System.out.println(errMsg);
System.exit(-);
} int result = ToolRunner.run(new Configuration(), new FlowGroup(), args);
System.exit(result);
}
}
FlowGroupPartition
package com.ares.hadoop.mr.flowgroup; import java.util.HashMap; import org.apache.hadoop.mapreduce.Partitioner; public class FlowGroupPartition<KEY, VALUE> extends Partitioner<KEY, VALUE>{
private static HashMap<String, Integer> groupMap = new HashMap<String, Integer>();
static {
groupMap.put("", );
groupMap.put("", );
groupMap.put("", );
groupMap.put("", );
} @Override
public int getPartition(KEY key, VALUE value, int numPartitions) {
// TODO Auto-generated method stub
return (groupMap.get(key.toString().substring(, )) == null)?:
groupMap.get(key.toString().substring(, ));
} }
【Hadoop】Hadoop MR 自定义分组 Partition机制的更多相关文章
- 【Hadoop】MapReduce自定义分区Partition输出各运营商的手机号码
MapReduce和自定义Partition MobileDriver主类 package Partition; import org.apache.hadoop.io.NullWritable; i ...
- 2 weekend110的hadoop的自定义排序实现 + mr程序中自定义分组的实现
我想得到按流量来排序,而且还是倒序,怎么达到实现呢? 达到下面这种效果, 默认是根据key来排, 我想根据value里的某个排, 解决思路:将value里的某个,放到key里去,然后来排 下面,开始w ...
- 一脸懵逼学习Hadoop中的MapReduce程序中自定义分组的实现
1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toStrin ...
- Hadoop自定义分组Group
matadata: hadoop a spark a hive a hbase a tachyon a storm a redis a 自定义分组 import org.apache.hadoop.c ...
- Hadoop mapreduce自定义分组RawComparator
本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需 ...
- hadoop提交作业自定义排序和分组
现有数据如下: 3 3 3 2 3 1 2 2 2 1 1 1 要求为: 先按第一列从小到大排序,如果第一列相同,按第二列从小到大排序 如果是hadoop默认的排序方式,只能比较key,也就是第一列, ...
- Hadoop【MR的分区、排序、分组】
[toc] 一.分区 问题:按照条件将结果输出到不同文件中 自定义分区步骤 1.自定义继承Partitioner类,重写getPartition()方法 2.在job驱动Driver中设置自定义的Pa ...
- Hadoop日记Day18---MapReduce排序分组
本节所用到的数据下载地址为:http://pan.baidu.com/s/1bnfELmZ MapReduce的排序分组任务与要求 我们知道排序分组是MapReduce中Mapper端的第四步,其中分 ...
- Hadoop Mapreduce分区、分组、二次排序过程详解[转]
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动 (1)最简单的过程: map - reduce (2) ...
随机推荐
- BZOJ 1208 [HNOI2004]宠物收养所 | SPlay模板题
题目: 洛谷也能评 题解: 记录一下当前树维护是宠物还是人,用Splay维护插入和删除. 对于任何一次询问操作都求一下value的前驱和后继(这里前驱和后继是可以和value相等的),比较哪个差值绝对 ...
- url为什么要编码及php中的中文字符urlencode基本原理
首先了解以下中文字符在使用urlencode的时候运用的基本原理: urlencode()函数原理就是首先把中文字符转换为十六进制,然后在每个字符前面加一个标识符%. 此字符串中除了 -_. 之外的所 ...
- img 标签下多余空白的解决方法
在浏览器中,图片默认的vertical-align是baseline.那么,我们该如何去掉这多余的空白呢? 1)将图片转换为块级 img{display:block;} 2) 设置图片的垂直对齐方式 ...
- QT5.3.1 Quick 开发 --- 项目类型的选择(转)
原文转自 https://www.cnblogs.com/aoldman/p/3966025.html 作为一个转行QT开发的新手,面对基于QML的开发时候 看到很多的项目类型感到很困惑,不知道应该怎 ...
- Linux有名信号量的创建(sem_open中name参数构造)【转】
转自:http://blog.csdn.net/gfeng168/article/details/40740865 版权声明:本文为博主原创文章,未经博主允许不得转载. 一.sem_open函数nam ...
- Linux中brk()系统调用,sbrk(),mmap(),malloc(),calloc()的异同【转】
转自:http://blog.csdn.net/kobbee9/article/details/7397010 brk和sbrk主要的工作是实现虚拟内存到内存的映射.在GNUC中,内存分配是这样的: ...
- SQL 数据库函数
字符串函数 lower(字符串表达式) | select lower('ABCDEF')返回 abcdef | 返回大写字符数据转换为小写的字符表达式. upper(字符串表达式) | select ...
- python update数据
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Time : 2017/11/23 23:57 # @Author : lijunjiang # @Fi ...
- ios控件渐变色的处理
+(CAGradientLayer *)gradientColorWithBounds:(CGRect)bounds startColorHexString:(NSString *)startColo ...
- Python的并发并行[4] -> 并发[1] -> concurrent.future 模块
concurrent.future 模块 1 thread模块 / thread Module 1.1 常量 / Constants Pass 1.2 函数 / Function Pass 1.3 类 ...