【Hadoop】Hadoop MR 自定义分组 Partition机制
1、概念
2、Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理
3、代码示例
FlowBean
package com.ares.hadoop.mr.flowgroup; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class FlowBean implements WritableComparable<FlowBean>{
private String phoneNum;
private long upFlow;
private long downFlow;
private long sumFlow; public FlowBean() {
// TODO Auto-generated constructor stub
}
// public FlowBean(String phoneNum, long upFlow, long downFlow, long sumFlow) {
// super();
// this.phoneNum = phoneNum;
// this.upFlow = upFlow;
// this.downFlow = downFlow;
// this.sumFlow = sumFlow;
// } public String getPhoneNum() {
return phoneNum;
} public void setPhoneNum(String phoneNum) {
this.phoneNum = phoneNum;
} public long getUpFlow() {
return upFlow;
} public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
} public long getDownFlow() {
return downFlow;
} public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
} public long getSumFlow() {
return sumFlow;
} public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
} @Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
phoneNum = in.readUTF();
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
} @Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
out.writeUTF(phoneNum);
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
} @Override
public String toString() {
return "" + phoneNum + "\t" + upFlow + "\t" + downFlow + "\t" + sumFlow;
} @Override
public int compareTo(FlowBean o) {
// TODO Auto-generated method stub
return sumFlow>o.getSumFlow()?-:;
} }
FlowGroup
package com.ares.hadoop.mr.flowgroup; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger; import com.ares.hadoop.mr.exception.LineException;
import com.ares.hadoop.mr.flowgroup.FlowBean;; public class FlowGroup extends Configured implements Tool {
private static final Logger LOGGER = Logger.getLogger(FlowGroup.class);
enum Counter {
LINESKIP
} public static class FlowGroupMapper extends Mapper<LongWritable, Text,
Text, FlowBean> {
private String line;
private int length;
private final static char separator = '\t'; private String phoneNum;
private long upFlow;
private long downFlow;
//private long sumFlow; private Text text = new Text();
private FlowBean flowBean = new FlowBean(); @Override
protected void map(
LongWritable key,
Text value,
Mapper<LongWritable, Text, Text, FlowBean>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//super.map(key, value, context);
String errMsg;
try {
line = value.toString();
String[] fields = StringUtils.split(line, separator);
length = fields.length;
if (length != ) {
throw new LineException(key.get() + ", " + line + " LENGTH INVALID, IGNORE...");
} phoneNum = fields[];
upFlow = Long.parseLong(fields[length-]);
downFlow = Long.parseLong(fields[length-]);
//sumFlow = upFlow + downFlow; text.set(phoneNum);
flowBean.setPhoneNum(phoneNum);
flowBean.setUpFlow(upFlow);
flowBean.setDownFlow(downFlow);
//flowBean.setSumFlow(sumFlow); context.write(text, flowBean);
} catch (LineException e) {
// TODO: handle exception
LOGGER.error(e);
System.out.println(e);
context.getCounter(Counter.LINESKIP).increment();
return;
} catch (NumberFormatException e) {
// TODO: handle exception
errMsg = key.get() + ", " + line + " FLOW DATA INVALID, IGNORE...";
LOGGER.error(errMsg);
System.out.println(errMsg);
context.getCounter(Counter.LINESKIP).increment();
return;
} catch (Exception e) {
// TODO: handle exception
LOGGER.error(e);
System.out.println(e);
context.getCounter(Counter.LINESKIP).increment();
return;
}
}
} public static class FlowGroupReducer extends Reducer<Text, FlowBean,
FlowBean, NullWritable> { private FlowBean flowBean = new FlowBean(); @Override
protected void reduce(
Text key,
Iterable<FlowBean> values,
Reducer<Text, FlowBean, FlowBean, NullWritable>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//super.reduce(arg0, arg1, arg2);
long upFlowCounter = ;
long downFlowCounter = ; for (FlowBean flowBean : values) {
upFlowCounter += flowBean.getUpFlow();
downFlowCounter += flowBean.getDownFlow();
}
flowBean.setPhoneNum(key.toString());
flowBean.setUpFlow(upFlowCounter);
flowBean.setDownFlow(downFlowCounter);
flowBean.setSumFlow(upFlowCounter + downFlowCounter); context.write(flowBean, NullWritable.get());
}
} @Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
String errMsg = "FlowGroup: TEST STARTED...";
LOGGER.debug(errMsg);
System.out.println(errMsg); Configuration conf = new Configuration();
//FOR Eclipse JVM Debug
//conf.set("mapreduce.job.jar", "flowsum.jar");
Job job = Job.getInstance(conf); // JOB NAME
job.setJobName("FlowGroup"); // JOB MAPPER & REDUCER
job.setJarByClass(FlowGroup.class);
job.setMapperClass(FlowGroupMapper.class);
job.setReducerClass(FlowGroupReducer.class); // JOB PARTITION
job.setPartitionerClass(FlowGroupPartition.class); // JOB REDUCE TASK NUMBER
job.setNumReduceTasks(); // MAP & REDUCE
job.setOutputKeyClass(FlowBean.class);
job.setOutputValueClass(NullWritable.class);
// MAP
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class); // JOB INPUT & OUTPUT PATH
//FileInputFormat.addInputPath(job, new Path(args[0]));
FileInputFormat.setInputPaths(job, args[]);
FileOutputFormat.setOutputPath(job, new Path(args[])); // VERBOSE OUTPUT
if (job.waitForCompletion(true)) {
errMsg = "FlowGroup: TEST SUCCESSFULLY...";
LOGGER.debug(errMsg);
System.out.println(errMsg);
return ;
} else {
errMsg = "FlowGroup: TEST FAILED...";
LOGGER.debug(errMsg);
System.out.println(errMsg);
return ;
} } public static void main(String[] args) throws Exception {
if (args.length != ) {
String errMsg = "FlowGroup: ARGUMENTS ERROR";
LOGGER.error(errMsg);
System.out.println(errMsg);
System.exit(-);
} int result = ToolRunner.run(new Configuration(), new FlowGroup(), args);
System.exit(result);
}
}
FlowGroupPartition
package com.ares.hadoop.mr.flowgroup; import java.util.HashMap; import org.apache.hadoop.mapreduce.Partitioner; public class FlowGroupPartition<KEY, VALUE> extends Partitioner<KEY, VALUE>{
private static HashMap<String, Integer> groupMap = new HashMap<String, Integer>();
static {
groupMap.put("", );
groupMap.put("", );
groupMap.put("", );
groupMap.put("", );
} @Override
public int getPartition(KEY key, VALUE value, int numPartitions) {
// TODO Auto-generated method stub
return (groupMap.get(key.toString().substring(, )) == null)?:
groupMap.get(key.toString().substring(, ));
} }
【Hadoop】Hadoop MR 自定义分组 Partition机制的更多相关文章
- 【Hadoop】MapReduce自定义分区Partition输出各运营商的手机号码
MapReduce和自定义Partition MobileDriver主类 package Partition; import org.apache.hadoop.io.NullWritable; i ...
- 2 weekend110的hadoop的自定义排序实现 + mr程序中自定义分组的实现
我想得到按流量来排序,而且还是倒序,怎么达到实现呢? 达到下面这种效果, 默认是根据key来排, 我想根据value里的某个排, 解决思路:将value里的某个,放到key里去,然后来排 下面,开始w ...
- 一脸懵逼学习Hadoop中的MapReduce程序中自定义分组的实现
1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toStrin ...
- Hadoop自定义分组Group
matadata: hadoop a spark a hive a hbase a tachyon a storm a redis a 自定义分组 import org.apache.hadoop.c ...
- Hadoop mapreduce自定义分组RawComparator
本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需 ...
- hadoop提交作业自定义排序和分组
现有数据如下: 3 3 3 2 3 1 2 2 2 1 1 1 要求为: 先按第一列从小到大排序,如果第一列相同,按第二列从小到大排序 如果是hadoop默认的排序方式,只能比较key,也就是第一列, ...
- Hadoop【MR的分区、排序、分组】
[toc] 一.分区 问题:按照条件将结果输出到不同文件中 自定义分区步骤 1.自定义继承Partitioner类,重写getPartition()方法 2.在job驱动Driver中设置自定义的Pa ...
- Hadoop日记Day18---MapReduce排序分组
本节所用到的数据下载地址为:http://pan.baidu.com/s/1bnfELmZ MapReduce的排序分组任务与要求 我们知道排序分组是MapReduce中Mapper端的第四步,其中分 ...
- Hadoop Mapreduce分区、分组、二次排序过程详解[转]
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动 (1)最简单的过程: map - reduce (2) ...
随机推荐
- POJ 2406 Power Strings 暴力
emmmm 显然的是a串长度是s串长度的因数 我们可以暴力枚举因数然后暴力check #include<cstdio> #include<algorithm> #include ...
- 【POJ 2728 Desert King】
Time Limit: 3000MSMemory Limit: 65536K Total Submissions: 27109Accepted: 7527 Description David the ...
- JNDI连接数据库的详细步骤 以及简要的c3po数据库连接的配置
第一步在tomcat的context.xml文件中配置数据源:context.xml的路径形式是:D:\Program Files (x86)\apache-tomcat-6.0.44\conf\co ...
- Http错误大全
HTTP/IIS错误类型 1XX 信息提示 用于表示临时的响应.客户端在收到常规响应之前,应准备接受一个或多个1XX响应. 100 :继续101 :切换协议 2XX 成功 表示服务器成功地接受了客户端 ...
- ARM嵌入式开发中的GCC内联汇编__asm__
在针对ARM体系结构的编程中,一般很难直接使用C语言产生操作协处理器的相关代码,因此使用汇编语言来实现就成为了唯一的选择.但如果完全通过汇编代码实现,又会过于复杂.难以调试.因此,C语言内嵌汇编的方式 ...
- 洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数
题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...
- sunos 修改shell为bash
root:x:::Super-User:/:/sbin/sh 改为 root:x:::Super-User:/:/usr/bin/bash 修改/增加 .profile 文件,在¥HOME路径下 ex ...
- scrapy递归下载网站
# encoding: utf-8 import os import re import subprocess import sys import chardet import scrapy fro ...
- 【原创】Linux环境下的图形系统和AMD R600显卡编程(9)——R600显卡的3D引擎和图形流水线
1. R600 3D引擎 R600核心是AMD一款非常重要的GPU核心,这个核心引入了统一处理器架构,其寄存器和指令集同以前的GPU 都完全不同,对其编程也有比较大的区别. 图1显示了R600 GPU ...
- 钩子注入呼出与隐藏DLL窗口
/ MFC_DLL.cpp : 定义 DLL 的初始化例程. // #include "stdafx.h" #include "MFC_DLL.h" #incl ...