【Hadoop】Hadoop MR 自定义分组 Partition机制
1、概念

2、Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理

3、代码示例
FlowBean
package com.ares.hadoop.mr.flowgroup; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class FlowBean implements WritableComparable<FlowBean>{
private String phoneNum;
private long upFlow;
private long downFlow;
private long sumFlow; public FlowBean() {
// TODO Auto-generated constructor stub
}
// public FlowBean(String phoneNum, long upFlow, long downFlow, long sumFlow) {
// super();
// this.phoneNum = phoneNum;
// this.upFlow = upFlow;
// this.downFlow = downFlow;
// this.sumFlow = sumFlow;
// } public String getPhoneNum() {
return phoneNum;
} public void setPhoneNum(String phoneNum) {
this.phoneNum = phoneNum;
} public long getUpFlow() {
return upFlow;
} public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
} public long getDownFlow() {
return downFlow;
} public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
} public long getSumFlow() {
return sumFlow;
} public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
} @Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
phoneNum = in.readUTF();
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
} @Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
out.writeUTF(phoneNum);
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
} @Override
public String toString() {
return "" + phoneNum + "\t" + upFlow + "\t" + downFlow + "\t" + sumFlow;
} @Override
public int compareTo(FlowBean o) {
// TODO Auto-generated method stub
return sumFlow>o.getSumFlow()?-:;
} }
FlowGroup
package com.ares.hadoop.mr.flowgroup; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger; import com.ares.hadoop.mr.exception.LineException;
import com.ares.hadoop.mr.flowgroup.FlowBean;; public class FlowGroup extends Configured implements Tool {
private static final Logger LOGGER = Logger.getLogger(FlowGroup.class);
enum Counter {
LINESKIP
} public static class FlowGroupMapper extends Mapper<LongWritable, Text,
Text, FlowBean> {
private String line;
private int length;
private final static char separator = '\t'; private String phoneNum;
private long upFlow;
private long downFlow;
//private long sumFlow; private Text text = new Text();
private FlowBean flowBean = new FlowBean(); @Override
protected void map(
LongWritable key,
Text value,
Mapper<LongWritable, Text, Text, FlowBean>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//super.map(key, value, context);
String errMsg;
try {
line = value.toString();
String[] fields = StringUtils.split(line, separator);
length = fields.length;
if (length != ) {
throw new LineException(key.get() + ", " + line + " LENGTH INVALID, IGNORE...");
} phoneNum = fields[];
upFlow = Long.parseLong(fields[length-]);
downFlow = Long.parseLong(fields[length-]);
//sumFlow = upFlow + downFlow; text.set(phoneNum);
flowBean.setPhoneNum(phoneNum);
flowBean.setUpFlow(upFlow);
flowBean.setDownFlow(downFlow);
//flowBean.setSumFlow(sumFlow); context.write(text, flowBean);
} catch (LineException e) {
// TODO: handle exception
LOGGER.error(e);
System.out.println(e);
context.getCounter(Counter.LINESKIP).increment();
return;
} catch (NumberFormatException e) {
// TODO: handle exception
errMsg = key.get() + ", " + line + " FLOW DATA INVALID, IGNORE...";
LOGGER.error(errMsg);
System.out.println(errMsg);
context.getCounter(Counter.LINESKIP).increment();
return;
} catch (Exception e) {
// TODO: handle exception
LOGGER.error(e);
System.out.println(e);
context.getCounter(Counter.LINESKIP).increment();
return;
}
}
} public static class FlowGroupReducer extends Reducer<Text, FlowBean,
FlowBean, NullWritable> { private FlowBean flowBean = new FlowBean(); @Override
protected void reduce(
Text key,
Iterable<FlowBean> values,
Reducer<Text, FlowBean, FlowBean, NullWritable>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//super.reduce(arg0, arg1, arg2);
long upFlowCounter = ;
long downFlowCounter = ; for (FlowBean flowBean : values) {
upFlowCounter += flowBean.getUpFlow();
downFlowCounter += flowBean.getDownFlow();
}
flowBean.setPhoneNum(key.toString());
flowBean.setUpFlow(upFlowCounter);
flowBean.setDownFlow(downFlowCounter);
flowBean.setSumFlow(upFlowCounter + downFlowCounter); context.write(flowBean, NullWritable.get());
}
} @Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
String errMsg = "FlowGroup: TEST STARTED...";
LOGGER.debug(errMsg);
System.out.println(errMsg); Configuration conf = new Configuration();
//FOR Eclipse JVM Debug
//conf.set("mapreduce.job.jar", "flowsum.jar");
Job job = Job.getInstance(conf); // JOB NAME
job.setJobName("FlowGroup"); // JOB MAPPER & REDUCER
job.setJarByClass(FlowGroup.class);
job.setMapperClass(FlowGroupMapper.class);
job.setReducerClass(FlowGroupReducer.class); // JOB PARTITION
job.setPartitionerClass(FlowGroupPartition.class); // JOB REDUCE TASK NUMBER
job.setNumReduceTasks(); // MAP & REDUCE
job.setOutputKeyClass(FlowBean.class);
job.setOutputValueClass(NullWritable.class);
// MAP
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class); // JOB INPUT & OUTPUT PATH
//FileInputFormat.addInputPath(job, new Path(args[0]));
FileInputFormat.setInputPaths(job, args[]);
FileOutputFormat.setOutputPath(job, new Path(args[])); // VERBOSE OUTPUT
if (job.waitForCompletion(true)) {
errMsg = "FlowGroup: TEST SUCCESSFULLY...";
LOGGER.debug(errMsg);
System.out.println(errMsg);
return ;
} else {
errMsg = "FlowGroup: TEST FAILED...";
LOGGER.debug(errMsg);
System.out.println(errMsg);
return ;
} } public static void main(String[] args) throws Exception {
if (args.length != ) {
String errMsg = "FlowGroup: ARGUMENTS ERROR";
LOGGER.error(errMsg);
System.out.println(errMsg);
System.exit(-);
} int result = ToolRunner.run(new Configuration(), new FlowGroup(), args);
System.exit(result);
}
}
FlowGroupPartition
package com.ares.hadoop.mr.flowgroup;
import java.util.HashMap;
import org.apache.hadoop.mapreduce.Partitioner;
public class FlowGroupPartition<KEY, VALUE> extends Partitioner<KEY, VALUE>{
private static HashMap<String, Integer> groupMap = new HashMap<String, Integer>();
static {
groupMap.put("", );
groupMap.put("", );
groupMap.put("", );
groupMap.put("", );
}
@Override
public int getPartition(KEY key, VALUE value, int numPartitions) {
// TODO Auto-generated method stub
return (groupMap.get(key.toString().substring(, )) == null)?:
groupMap.get(key.toString().substring(, ));
}
}
【Hadoop】Hadoop MR 自定义分组 Partition机制的更多相关文章
- 【Hadoop】MapReduce自定义分区Partition输出各运营商的手机号码
MapReduce和自定义Partition MobileDriver主类 package Partition; import org.apache.hadoop.io.NullWritable; i ...
- 2 weekend110的hadoop的自定义排序实现 + mr程序中自定义分组的实现
我想得到按流量来排序,而且还是倒序,怎么达到实现呢? 达到下面这种效果, 默认是根据key来排, 我想根据value里的某个排, 解决思路:将value里的某个,放到key里去,然后来排 下面,开始w ...
- 一脸懵逼学习Hadoop中的MapReduce程序中自定义分组的实现
1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toStrin ...
- Hadoop自定义分组Group
matadata: hadoop a spark a hive a hbase a tachyon a storm a redis a 自定义分组 import org.apache.hadoop.c ...
- Hadoop mapreduce自定义分组RawComparator
本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需 ...
- hadoop提交作业自定义排序和分组
现有数据如下: 3 3 3 2 3 1 2 2 2 1 1 1 要求为: 先按第一列从小到大排序,如果第一列相同,按第二列从小到大排序 如果是hadoop默认的排序方式,只能比较key,也就是第一列, ...
- Hadoop【MR的分区、排序、分组】
[toc] 一.分区 问题:按照条件将结果输出到不同文件中 自定义分区步骤 1.自定义继承Partitioner类,重写getPartition()方法 2.在job驱动Driver中设置自定义的Pa ...
- Hadoop日记Day18---MapReduce排序分组
本节所用到的数据下载地址为:http://pan.baidu.com/s/1bnfELmZ MapReduce的排序分组任务与要求 我们知道排序分组是MapReduce中Mapper端的第四步,其中分 ...
- Hadoop Mapreduce分区、分组、二次排序过程详解[转]
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动 (1)最简单的过程: map - reduce (2) ...
随机推荐
- 最大异或和(xor)
最大异或和(xor) 题目描述 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.A x:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Q l r x: ...
- 设置RobotFramework的ftplibrary中,将Upload_file操作的异常改为回显错误信息。
测试中需要通过FTP通道,将数据发送给服务器,而这个上传的数据要被阻断.在结合RobotFramework测试中,安装的ftplibrary,使用upload_file操作,如果上传动作失败,会抛出异 ...
- 【马克-to-win】—— 学习笔记
声明 以下学习内容转载自:http://www.mark-to-win.com/ 社区,由马克java社区创始人---"马克-to-win"一人全部独立写作,创作和制作. 非常感谢 ...
- 如何使用 JSP JSTL 显示/制作树(tree) 菜单
JSTL里面并没有直接制作tree菜单的元素,因此递归是JSP JSTL显示/制作tree菜单的唯一方法. 以下详述如何制作tree菜单. 首先,在主页面里面增加包含制作树菜单的jsp,例如: 在my ...
- java中的UDP总结
先说一下关于InetAddress类,用一个小例子: import java.net.InetAddress; import java.net.UnknownHostException; public ...
- javascript中在定义函数的几种形式
内容主要是讲述javascript在类(原型对象)中定义方法的几种形式,简要之主要有三种:this关键字.prototype关键字.var 对象名={name:value,name2:value2}: ...
- 如何在Windows2008中禁用IPv6
我自己修复此问题 更改 DisabledComponents 注册表值 您可以通过将DisabledComponents注册表值的主机上禁用 IPv6.DisabledComponents注册表值会影 ...
- java合并两个有序数组的算法(抛砖引玉)
前几天看见一道面试题中要将两个有序数组合并成一个新的有序数组,首先使用了嵌套循环,之后想那样效率太低,又想出了以下思路,和大家分享下,如果有更好的方法,请留言指教: 思路: 1.新建一个数组大小为fi ...
- 分享一下我写的.net 2.0的orm类,实现mvc。可以用于webform等环境中,这是orm的原理部分。
using System;using System.Collections.Generic;using System.Configuration;using System.Data;using Sys ...
- matlab多行注释的三种方法
转自:http://icictech.blog.163.com/blog/static/2797425420084595725499/ 1)方法一 选中你要加注释的内容,然后选择工具菜单"t ...