P4285 [SHOI2008]汉诺塔
题目描述
汉诺塔由三根柱子(分别用A、B、C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体。 对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘子一定放在比它更大的盘子上面(如果移动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上面的那个盘子移到柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。 有一种非常简洁而经典的策略可以帮助我们完成这个游戏。首先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)赋予不同的优先级,然后,我们总是选择符合以下两个条件的操作来移动盘子,直到所有的盘子都从柱子A移动到另一根柱子: (1)这种操作是所有合法操作中优先级最高的; (2)这种操作所要移动的盘子不是上一次操作所移动的那个盘子。 可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计算按照上述策略操作汉诺塔移动所需要的步骤数。

输入输出格式
输入格式:
输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。
输出格式:
只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。
输入输出样例
3
AB BC CA BA CB AC
7
2
AB BA CA BC CB AC
5
说明
对于20%的数据,n ≤ 10。 对于100%的数据,n ≤ 30。
Solution:
本题由于题面中说道按照上述方法一定能有答案。
那么我们由普通的$hanoi$三塔的递推式:$d[i]=2*d[i-1]+1$(现实意义是将$i-1$个移动到$B$柱,再将$A$柱的一个移动到$C$柱,最后把$B$柱的$i-1$个移动到$C$柱),具体证明直接数归,还是比较简单的。
然后扩展到本题,我们可以直接$dfs$处理出$n=1,2,3$的情况所对应的$d[1],d[2],d[3]$。
由数归不难得出:$d[i]=k*d[i-1]+b$(可以类比普通$hanoi$塔)。
则$k=\frac{d[3]-d[2]}{d[2]-d[1]},\;b=d[3]-d[2]*k$。
最后$O(n)$递推即可得到$d[n]$了。
代码:
#include<bits/stdc++.h>
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define il inline
#define ll long long
using namespace std;
const int N=;
int n;
ll d[N];
int stk[][],cnt[];
struct node{
int fr,to;
}a[N];
bool vis[];
char s[];
il void dfs(int p,int c,int lst){
if(cnt[]==c||cnt[]==c){d[c]=p;return;}
For(i,,){
int j=a[i].fr,k=a[i].to;
if(cnt[j]&&j!=lst){
if(stk[j][cnt[j]]<stk[k][cnt[k]]||!stk[k][cnt[k]]){
stk[k][++cnt[k]]=stk[j][cnt[j]];
cnt[j]--;
dfs(p+,c,k);
break;
}
}
}
}
int main(){
scanf("%d",&n);
For(i,,){
scanf("%s",s);
a[i].fr=s[]-'A',a[i].to=s[]-'A';
}
stk[][++cnt[]]=;
dfs(,,-);
cnt[]=cnt[]=cnt[]=;
For(i,,)stk[][++cnt[]]=-i;
dfs(,,-);
cnt[]=cnt[]=cnt[]=;
For(i,,)stk[][++cnt[]]=-i;
dfs(,,-);
if(n<=)cout<<d[n];
else {
ll k=(d[]-d[])/(d[]-d[]),q=d[]-k*d[];
For(i,,n)d[i]=1ll*k*(d[i-])+q;
cout<<d[n];
}
return ;
}
P4285 [SHOI2008]汉诺塔的更多相关文章
- bzoj1019 / P4285 [SHOI2008]汉诺塔
P4285 [SHOI2008]汉诺塔 递推 题目给出了优先级,那么走法是唯一的. 我们用$0,1,2$代表$A,B,C$三个柱子 设$g[i][x]$为第$x$根柱子上的$i$个盘子,经过演变后最终 ...
- BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔
汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNO ...
- P4285 [SHOI2008]汉诺塔 题解 (乱搞)
题目链接 P4285 [SHOI2008]汉诺塔 解题思路 提供一种打表新思路 先来证明一个其他题解都没有证明的结论:\(ans[i]\)是可由\(ans[i-1]\)线性递推的. (\(ans[i] ...
- 1019: [SHOI2008]汉诺塔
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1495 Solved: 916[Submit][Status] ...
- bzoj1019 [SHOI2008]汉诺塔
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1030 Solved: 638[Submit][Status] ...
- BZOJ 1019: [SHOI2008]汉诺塔( dp )
dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移... ------------------------------------------------ ...
- 【BZOJ1019】[SHOI2008]汉诺塔(数论,搜索)
[BZOJ1019][SHOI2008]汉诺塔(数论,搜索) 题面 BZOJ 洛谷 题解 首先汉诺塔问题的递推式我们大力猜想一下一定会是形如\(f_i=kf_{i-1}+b\)的形式. 这个鬼玩意不好 ...
- bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔
http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题目中问步骤数,没说最少 可以大胆猜测移动方案唯一 (真的是唯一但不会证) 设f[i][j] ...
- 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)
1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...
随机推荐
- lambda表达式的使用
lambda表达式和可遍历的datatable结合使用,把表中某一列中的数据转成字符串,用“|”隔开,代码如下: obj = tableName.AsEnumerable();if(tableName ...
- [干货分享]一篇可能会让你爱上MVVM与ReactiveCocoa的文章
概要 在此工程中,本文将讨论将MVC改造为MVVM需要的一些基本方法,同时会适当穿插部分关于MVVM概念性的讨论!本文最大的意义在于,提供了一种读者可以复现的方式,逐步引出从MVC向MVVM尽可能平滑 ...
- 阿里云OSS图片上传plupload.js结合jq-weui 图片上传的插件
项目中用到了oss上传,用的plupload,奈何样式上不敢恭维,特别是放在移动端上使用.于是自己把它移植到了jq weui的上传图片组件上. 更改:选择照片后确认即及时上传至oss服务器,不限制上传 ...
- 原生js关闭窗口
if (navigator.userAgent.indexOf("MSIE") > 0) { if (navigator.userAgent.indexOf("MS ...
- input标签中的name
<input>标签是java web的jsp页面中最常用的标签,特别是用来在页面和servlet中传递内容, 但是我们看到<input>标签中有很多内容,这边我们只提一下主要的 ...
- PHP CI框架学习
CI框架的URL辅助函数使用 URL 辅助函数文件包含一些在处理 URL 中很有用的函数 加载辅助函数 在使用CI框架的使用经常碰到跳转和路径方面的问题,site_url()和base_url()很容 ...
- ios 苹果内购订单验证 --- php实现
验证函数: function appleVerify($receipt_data,$orderId = 0) { /* * 21000 App Store不能读取你提供的JSON对象 * 21002 ...
- POJ:2377-Bad Cowtractors
传送门:http://poj.org/problem?id=2377 Bad Cowtractors Time Limit: 1000MS Memory Limit: 65536K Total Sub ...
- scala高级性质-隐式转换 -02
今天我们来介绍scala的高级特性,上次已经介绍过他的一个特性:高阶函数,这次是隐式转换 1.隐式转换的例子 read的例子 解析:发现这个file没有read的方法,然后就开始在开始在这个上下文里面 ...
- C#学习你需要知道的---(For和Foreach)
本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/52577283 作者:car ...