n+1个坐标可以列出n个方程,以二维为例,设圆心为(x,y),给出三个点分别是(a1,b1),(a2,b2),(a3,b3)

因为圆上各点到圆心的距离相同,于是可以列出距离方程

\[(a1-x)^2+(b1-y)^2=(a2-x)^2+(b2-y)^2
\]

\[(a1-x)^2+(b1-y)^2=(a3-x)^2+(b3-y)^2
\]

然后化简

\[-2(a2-a1)x-2(b2-b1)y=a1^2-a2^2+b1^2-b2^2
\]

\[-2(a3-a1)x-2(b3-b1)y=a1^2-a3^2+b1^2-b3^2;
\]

然后就可以用高斯消元了

#include<iostream>
#include<cstdio>
using namespace std;
const int N=25;
int n;
double f[N],a[N][N],p;
void gaosi()
{
for(int i=1;i<=n;i++)
{
int nw=i;
for(int j=i+1;j<=n;j++)
if(a[j][i]>a[nw][i])
nw=j;
for(int j=i;j<=n+1;j++)
swap(a[nw][j],a[i][j]);
for(int j=i+1;j<=n+1;j++)
a[i][j]/=a[i][i];
a[i][i]=1;
for(int j=i+1;j<=n;j++)
{
for(int k=i+1;k<=n+1;k++)
a[j][k]-=a[j][i]*a[i][k];
a[j][i]=0;
}
}
for(int i=n;i>=1;i--)
for(int j=i+1;j<=n;j++)
{
a[i][n+1]-=a[i][j]*a[j][n+1];
a[i][j]=0;
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf",&f[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%lf",&p);
a[i][j]=2*(p-f[j]);
a[i][n+1]+=p*p-f[j]*f[j];
}
gaosi();
for(int i=1;i<=n;i++)
printf("%.3lf ",a[i][n+1]);
return 0;
}

bzoj 1013: [JSOI2008]球形空间产生器sphere【高斯消元】的更多相关文章

  1. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  2. lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内 ...

  3. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  4. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  5. BZOJ 1013 [JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3074  Solved: 1614[Subm ...

  6. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  7. 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  8. 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题

    最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...

  9. BZOJ 1013 球形空间产生器sphere 高斯消元

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...

随机推荐

  1. Spring Boot Starter 速查

    Spring Boot应用启动器基本的一共有40多种,常用的如下 1)spring-boot-starter 这是Spring Boot的核心启动器,包含了自动配置.日志和YAML. 2)spring ...

  2. Day2-Python基础2---字符串操作

    一.字符串操作 特性:不可修改 name = "my \tname is {name} and i am {year} old" #首字母大写.capitalize print(n ...

  3. XXXAction-validation.xml文件中报错:Referenced file Contains errors

    我们需要引用与验证器配置相关的dtd文件,这个文件可以在xwork-core-2.3.1.2.jar下找到(xwork-validator-1.0.3.dtd) 网上有很多处理办法,如下所示: 1.直 ...

  4. php大型网站如何提高性能和并发访问

    一.大型网站性能提高策略: 大型网站,比如门户网站,在面对大量用户访问.高并发请求方面,基本的解决方案集中在这样几个环节:使用高性能的服务器.高性能的数据库.高效率的编程语言.还有高性能的Web容器. ...

  5. 使用cython把python编译so

    1.需求 为了保证线上代码安全和效率,使用python编写代码,pyc可直接反编译,于是把重要代码编译so文件 2.工作 2.1 安装相关库: pip install cython yum insta ...

  6. python 函数对象、函数嵌套、名称空间与作用域、装饰器

    一 函数对象 一 函数是第一类对象,即函数可以当作数据传递 1 可以被引用 2 可以当作参数传递 3 返回值可以是函数 3 可以当作容器类型的元素 二 利用该特性,优雅的取代多分支的if def fo ...

  7. Solaris10安装配置LDAP(iPlanet Directory Server )

    Solaris10安装光盘自带了iPlanet Directory Server安装包,系统管理员可以利用iPlanet Directory Server在Solaris系统创建一个LDAP Serv ...

  8. How to clear fmadm log or FMA faults log (ZT)

    Here are the step by step of clearing the FMA faults on most of Oracle/Sun server. Work perfectly on ...

  9. 常用Oracle分析函数详解

    学习步骤:1. 拥有Oracle EBS demo 环境 或者 PROD 环境2. copy以下代码进 PL/SQL3. 配合解释分析结果4. 如果网页有点乱请复制到TXT中查看 /*假设一个经理代表 ...

  10. dubbo错误排查之No provider available for the service

    今天搞的一个dubbo服务,暴漏出来了,但是consumer端启动就报这个错,排查过程记录一下 一.启动zkCli 利用命令查看 ls / ls /dubbo 继续查看 ls /dubbo/com.w ...