BP神经网络的手写数字识别

ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了。作为一种general purpose的学**算法,如果你实在不想去理会其他类型算法的理论基础,那就请使用ANN吧。本文为笔者使用BP神经网络进行手写数字识别的整体思路和算法实现,由于近年来神经网络在深度学**,尤其是无监督特征学**上的成功,理解神经网络的实现机制也许可以让“黑盒”变得不再神秘。

首先,作为一篇面向机器学**爱好者的文章,基本的理论介绍还是必要的。BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学**过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学**的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学**训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学**次数为止。

网络结构

输入层有n个神经元,隐含层有p个神经元,输出层有q个神经元。

变量定义

参数训练

算法流程

图像预处理与归一化

好了,理论介绍完了,接下来看看如何识别手写数字。

输入样本示例

输入样本为书写数字的图像,数据下载百度网盘链接:http://yun.baidu.com/s/1nt3UewD

本文采用逐像素特征提取的方法提取数字样本的特征向量。将像素点RGB值之和大于255的像素点,特征值设为1,反之设为0。归一化的图像生成一个28x28的布尔矩阵,依次取每列元素,转化为784x1的列矩阵,作为输入图像的特征向量。

模型训练与模型识别

BP神经网络模型参数设置

样本描述:

受训练样本限制,本文仅对0,1,2,3,4这5个数字进行识别。每个数字对应训练样本与测试样本数量如下表

模型评估

程序设计参考(Java)

public class AnnModel:前反馈神经网络模型

主要成员变量

public HiddenNeuron[] hiddenLayer;

//隐含层神经元数组

public OutputNeuron[] outputLayer;

//输出层神经元数组

publicintinputLayerSize,hiddenLayerSize,outputLayerSize;

//输入层神经元个数、隐含层神经元个数、输出层神经元个数

主要方法

public BPAnnModel(intinputLayerSize,inthiddenLayerSize,int outputLayerSize)

//根据输入层、隐含层与输出层神经元个数,初始化隐含层与输出层各神经元,构造网络模型

publicdouble[] calculateHiddenLayerOutput(double[] inputLayer)

//根据输入层计算隐含层输出

publicdouble[] calculateModelOutput(double[] inputLayer)

//根据输入层计算输出层输出

public String getOutputClass(double[] inputLayers)

//根据输入层预测分类结果

publicvoidsave(String modelSavePath)

//将模型的训练结果保存到文本文件中

publicstatic BPAnnModel load(String modelSavePath)

//从保存训练结果的文本文件中读取模型参数,创建神经网络模型实例

public class Neuron:神经元超类

主要成员变量

publicdoubletheta=0.2;

//theta 为神经元兴奋度阈值

publicdouble[] weight;

//权值向量

publicdoublemu=0.1;

//mu为梯度下降的学**速率

publicintidx;

//idx为神经元在其所在层的索引位置

主要方法

public Neuron(intweightArrLength,intidx)

//根据权值向量长度初始化权值向量,构造神经元实例,this.idx=idx

publicdouble calculateActivation(double[] layerInput)

//根据神经元输入计算净活跃度

publicdouble calculateOutput(double[]layerInput)

//根据神经元输入计算神经元输出

publicdouble logisticSigmod(doublefixedActivation)

//激活函数

publicdouble logisticSigmod_1(doubleoutput)

//激活函数一阶导数

public class HiddenNeuron:隐含层神经元,Neuron子类

publicvoidupdateWeight(double[] inputLayer, double[]yArr,

double[] tmpHiddenLayerOutput,

double[] tmpModelOutput)

//根据网络模型输入层、期望输出、隐含层输出与输出层修正权值向量

public class OutputNeuron:输出层神经元,Neuron子类

publicvoidupdateWeight(double[] inputLayer, double[]yArr)

//根据网络模型输入层和期望输出修正权值向量

public class BPBP神经网络训练主程序

主要成员变量

publicdoubleepsilon=0.005;

//训练停止的最小误差

publicintcurTrainingTimes=0,maxTrainingTimes=50000;

//当前训练次数与最大训练次数

public BPAnnModel model;

//神经网络模型

publicdouble[][] trainData;

//训练数据集

主要方法

publicvoidsetModel(BPAnnModel model)

//加载权值已训练好的神经网络模型

publicvoidsetTrain(String trainPath,String varType,Stringdelimiter)

//输入训练数据文件与文件格式生成训练数据集

publicvoidtrain()

//执行训练过程

publicdouble calculateSingleError(double[] inputLayer,double[] yArr,boolean standardizeTrans)

//计算单训练点误差

publicdouble calculateGlobalError()

//计算全局误差

注意事项

1.输入样本归一化处理 由于模型输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长、模型不稳定。因此在进行训练之前通常需要对数据进行归一化处理。为了统一各层神经元的输入标准,采用S形激活函数时,激活函数的值域为 (0,1),通常采用max&min的方法将变量映射成 (0,1) 之间的数;采用双极S形激活函数时,激活函数的值域为 (-1,1),通常采用2(max&min)-1的方法将变量映射成 (-1,1) 之间的数。

2.减少计算全局误差的频次 每次迭代过程中,权值修正的效率只和网络的规模有关系,而计算全局误差消耗的时间则和样本量的大小直接成正比。在样本量较大的情况下,频繁的计算全局误差会带来及大的开销。为了提高训练效率,可以采取批量式的训练方法,即在第六步完成后,直接跳回第二步,进行指定次迭代后,再进入到第七步进行全局误差检验。

3.输出层定义 当目标变量有m个分类时,输出层的神经元个数通常有有两种定义方法,m或以2为底的log m。建议采用m作为输出层神经元个数,一方面可以很方便地从输出层输出信号映射到分类值;另一方面可以给出分类结论的“置信度”。采用以2为底的log m作为输出层神经元个数时,通常采用输出信号的二进制表示去映射指定分类。

4.学**效率(梯度下降的步长)参数设定

学**效率直接影响着网络收敛的速度,以及网络能否收敛。学**效率设置偏小可以保证网络收敛,但是收敛较慢;反之则有可能使网络训练不收敛,影响识别效果。因此可以在误差快速下降后放缓学**效率,增强模型稳定性。

5.过拟合问题 神经网络计算不能一味地追求训练误差最小,这样很容易出现“过拟合”现象,只要能够实时检测误差率的变化就可以确定最佳的训练次数,比如在本文中25000次左右的学**次数即可在测试数据上达到最优效果,25000次之后的学**,不仅徒增计算量,而且还有过拟合的风险。

 
 

BP神经网络的手写数字识别的更多相关文章

  1. 利用c++编写bp神经网络实现手写数字识别详解

    利用c++编写bp神经网络实现手写数字识别 写在前面 从大一入学开始,本菜菜就一直想学习一下神经网络算法,但由于时间和资源所限,一直未展开比较透彻的学习.大二下人工智能课的修习,给了我一个学习的契机. ...

  2. BP神经网络(手写数字识别)

    1实验环境 实验环境:CPU i7-3770@3.40GHz,内存8G,windows10 64位操作系统 实现语言:python 实验数据:Mnist数据集 程序使用的数据库是mnist手写数字数据 ...

  3. 【机器学习】BP神经网络实现手写数字识别

    最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一 ...

  4. TensorFlow卷积神经网络实现手写数字识别以及可视化

    边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190 ...

  5. 第二节,TensorFlow 使用前馈神经网络实现手写数字识别

    一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输 ...

  6. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  7. TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

    从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...

  8. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  9. NN:利用深度学习之神经网络实现手写数字识别(数据集50000张图片)—Jason niu

    import mnist_loader import network training_data, validation_data, test_data = mnist_loader.load_dat ...

随机推荐

  1. 用户管理的设计--3.jquery的ajax实现二级联动

    页面效果 实现步骤 1.引入struts整合json的插件包 2.页面使用jquery的ajax调用二级联动的js //ajax的二级联动,使用选择的所属单位,查询该所属单位下对应的单位名称列表 fu ...

  2. 开源框架 epics,开源画面编辑软件 edm

    epics Experimental Physics and Industrial Control System 一套开源软件框架,实验物理和工业控制系统 http://www.aps.anl.gov ...

  3. SAP成都研究院大卫哥:SAP C4C中国本地化之微信小程序集成

    今天的文章来自Wu David,SAP成都研究院C4C开发团队的架构师,在加入团队之前曾经在SAP上海研究院工作,组内同事习惯亲切地称呼他为大卫哥. 大卫哥身高据Jerry目测有1米8以上,是成都C4 ...

  4. ERP和C4C中的function location

    SAP ERP里的Functional Locations,下载到SAP Cloud for Customer后成为类型为'Functional Location'的Installation Poin ...

  5. log4net 简单配置

    <configSections> <section name="log4net" type="log4net.Config.Log4NetConfigu ...

  6. 问题 A: xiaoping学构造函数

    题目描述 xiaoping刚接触类的构造和析构函数,对于构造函数的编写比较困惑.zhuangzhuang给小平布置了一道题目,xiaoping苦思两天也无法解答,请你帮帮xiaoping吧. #inc ...

  7. Family Gathering at Christmas(思维题)

    Family Gathering at Christmas 时间限制: 1 Sec  内存限制: 128 MB提交: 13  解决: 4[提交] [状态] [讨论版] [命题人:admin] 题目描述 ...

  8. Laravel 5 : Call to undefined function Illuminate\Foundation\Bootstrap\mb_internal_encoding()

    自己组装的apache,php,mysql phpinfo显示 OpenSSL support     disabled (install ext/openssl) 判断为权限问题,所以修改如下. 1 ...

  9. django模板层(templates)

    1.基础部分 通过使用模板,就可以在URL中直接调用HTML,它还是松耦合的,灵活性强,而且更容易维护 而且可以将变量通过一定的方式嵌入到HTML中,最终渲染到页面,总的来说基于模板完成了数据与用户之 ...

  10. BZOJ4128: Matrix(BSGS 矩阵乘法)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 813  Solved: 442[Submit][Status][Discuss] Descriptio ...