分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html

注:从这个题收获了两点

1,第一象限(x,y)到(0,0)的线段上整点的个数是gcd(x,y)

2,新学了一发求gcd(x,y)=k有多少对的姿势,已知0<x<=n,0<y<=m

令x=min(n,m),令f[i]代表gcd(x,y)=i的对数,

那么通过O(xlogx)的复杂度就可以得到f[1]到f[n](反着循环)

普通的容斥(即莫比乌斯反演)其实也是O(xlogx)的,只是需要筛一遍莫比乌斯函数

总结:对于求单个的gcd(x,y)=k的对数,可以用莫比乌斯反演来做,这样的复杂度是O(n/k)的

对于求gcd(x,y)=(1,..n)的对数,每个分别求解时,直接用这样的O(nlogn)的筛法就好,省代码,还好写

#include<cstdio>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
typedef long long LL;
const int N=1e5+;
const int INF=0x3f3f3f3f;
LL f[N];
int main(){
LL n,m,ans=;
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
for(int i=n;i>=;--i){
f[i]=n/i*(m/i);
for(int j=i+i;j<=n;j+=i)
f[i]-=f[j];
ans+=f[i]*(*i-);
}
printf("%lld\n",ans);
return ;
}

BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛的更多相关文章

  1. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  2. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  3. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  4. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  5. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  6. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  7. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  8. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  9. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

随机推荐

  1. centos svn安装

    http://fengjunoo.iteye.com/blog/1759265(参考) 以前在ubuntu上安装过一次svn,那次弄得有些麻烦. 这次记录下centos环境下安装svn的步骤 其实简单 ...

  2. js实现克隆一个对象

    var app={}; app.cloneobj= function(obj){ var o; if(typeof obj == "object"){ if(obj===null) ...

  3. web api写api接口时返回

    web api写api接口时默认返回的是把你的对象序列化后以XML形式返回,那么怎样才能让其返回为json呢,下面就介绍两种方法: 方法一:(改配置法) 找到Global.asax文件,在Applic ...

  4. Hash算法初见

    hash算法 (hashmap 实现原理)   Hash ,一般翻译做“ 散列” ,也有直接音译为“ 哈希” 的,就是把任意长度的输入(又叫做预映射, pre-image ),通过散列算法,变换成固定 ...

  5. sublime主题推荐

    PS:之前在CSDN上写的文章,现在转到博客园~ 寒假的时候发现一个sublime主题,我觉得很赞哦~~推荐给大家~~ 下载方式 step1:ctrl+shift+p  调出command palet ...

  6. 在Windows Server 2008上部署SVN代码管理总结

    这段时间在公司开发Flex程序,所以使用TortoiseSVN作为团队代码管理器,今天在公司服务器上部署SVN服务器,并实验成功,总结如下: 服务器环境: 操作系统:Windows Server 20 ...

  7. Codeforces 616E - Sum of Remainders

    616E Sum of Remainders Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + - + n mod m. As ...

  8. 1.0 基础、标示符、常量、数据类型(enum 枚举,struct 结构体)、操作符、循环、数组

    一.程序 现实生活中,程序是指完成某些事务的一种既定方法和过程,可以把程序看成是一系列动作执行过程的描述. 在计算机世界,程序是指令,即为了让计算机执行某些操作或解决某个问题而编写的一系列有序指令的集 ...

  9. java实现的JDBCTemplate工具

    1.DButil import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; impor ...

  10. VM启动报错:Failed to lock the file

    http://www.cnblogs.com/kristain/articles/2491966.html Reason: Failed to lock the fileGoogle 了一下, 在網路 ...