//prim算法
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<string>
#include<stack>
#include<queue>
#include<map>
#define MAX 510
const int INF=1000000000;
using namespace std;
//顶点到集合s的最短距离
int d[MAX],G[MAX][MAX];
int n,m;
bool isVisit[MAX]={false};
//返回最小生成树的边权之和
int prim(){
fill(d,d+MAX,INF);
d[0]=0;
int ans=0;
for(int i=0;i<n;i++){
int u=-1,MIN=INF;
for(int j=0;j<n;j++){
if(isVisit[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
if(u==-1) return -1;
isVisit[u]=true;
ans+=d[u];
for(int v=0;v<n;v++){
if(isVisit[v]==false&&G[u][v]!=INF&&G[u][v]<d[v])
d[v]=G[u][v];
}
}
return ans;
} int main(){
int u,v,w;
//顶点个数,边数
scanf("%d%d",&n,&m);
//初始化图
fill(G[0],G[0]+MAX*MAX,INF);
for(int i=0;i<m;i++){
scanf("%d%d%d",&u,&v,&w);
G[u][v]=G[v][u]=w;
}
int ans=prim();
printf("%d\n",ans);
return 0;
}

  类似Dijkstra算法,但是此时d[]表示顶点Vi与集合S的最短距离

kruskal算法:

运用并查集,判断两个点是否在一个及集合中,,即测试两个端点是否在不同连通块中

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<string>
#include<stack>
#include<queue>
#include<map>
const int MAX=;
const int MAXE=;
const int INF=;
using namespace std;
//顶点到集合s的最短距离
int d[MAX],father[MAX];
int n,m;
bool isVisit[MAX]={false};
struct edge{
int node1,node2;
int weight;
}E[MAXE];
bool cmp(edge e1,edge e2){
return e1.weight<e2.weight;
}
int findFather(int x){
int a=x;
while(x!=father[x]){
x=father[x];
}
while(a!=father[a]){
int temp=a;
a=father[a];
father[temp]=x;
}
return x;
}
int kruskal(){
int ans=,num_edge=;
for(int i=;i<n;i++)
father[i]=i;
sort(E,E+m,cmp);
for(int i=;i<m;i++){
int f1=findFather(E[i].node1);
int f2=findFather(E[i].node2);
if(f1!=f2){
father[f1]=f2;
ans+=E[i].weight;
num_edge++;
//边数等于顶点数-1结束
if(num_edge==n-) break;
}
}
if(num_edge!=n-) return -;
else return ans;
} int main(){
//顶点个数,边数
scanf("%d%d",&n,&m);
for(int i=;i<m;i++){
scanf("%d%d%d",&E[i].node1,&E[i].node2,&E[i].weight);
}
int ans=kruskal();
printf("%d\n",ans);
return ;
}

最小生成树--Prim及Kruskal的更多相关文章

  1. poj1861 最小生成树 prim &amp; kruskal

    // poj1861 最小生成树 prim & kruskal // // 一个水题,为的仅仅是回味一下模板.日后好有个照顾不是 #include <cstdio> #includ ...

  2. 图的最小生成树(Prim、Kruskal)

    理论: Prim: 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合.算法从U={u0}(u0∈V).TE={}开始.重复执行下列操作: 在所有u∈U,v∈V-U的边(u,v)∈E ...

  3. 最小生成树 Prim算法 Kruskal算法实现

    最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的 ...

  4. 最小生成树Prim算法 Kruskal算法

    Prim算法(贪心策略)N^2 选定图中任意定点v0,从v0开始生成最小生成树 树中节点Va,树外节点Vb 最开始选一个点为Va,其余Vb, 之后不断加Vb到Va最短距离的点 1.初始化d[v0]=0 ...

  5. 最小生成树prim和kruskal模板

    prim: int cost[MAX_V][MAX_V]; //cost[u][v]表示边e=(u,v)的权值(不存在的情况下设为INF) int mincost[MAX_V]; //从集合X出发的每 ...

  6. 最小生成树Prim算法Kruskal算法

    Prim算法采用与Dijkstra.Bellamn-Ford算法一样的“蓝白点”思想:白点代表已经进入最小生成树的点,蓝点代表未进入最小生成树的点. 算法分析 & 思想讲解: Prim算法每次 ...

  7. 最小生成树 Prim和Kruskal

    感觉挺简单的,Prim和Dijkstra差不多,Kruskal搞个并查集就行了,直接上代码吧,核心思路都是找最小的边. Prim int n,m; int g[N][N]; int u,v; int ...

  8. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  9. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

随机推荐

  1. 2019 ACM-ICPC 南京 现场赛 K. Triangle (二分)

    题意 给定一个三角形和一个点 \(p\),如果该点不在三角形边上直接输出 \(-1\),否则在三角形上找一点 \(q\),使得线段 \(pq\) 平分三角形面积. 思路 看完题想都没想直接二分了. 就 ...

  2. HTML5网页如何让所有的浏览器都能识别语义元素标签样式

    浏览器对语义元素的支持情况 如今HTML5愈来愈引发大家的关注了,但目前支持HTML5的浏览器还不是主流,特别是国内用户近50%以上仍旧使用IE6,由于支持HTML5的IE9不支持Xp系统安装,这样未 ...

  3. python获取每日涨跌停股票统计,封闭时间和打开次数

    接口:limit_list 描述:获取每日涨跌停股票统计,包括封闭时间和打开次数等数据,帮助用户快速定位近期强(弱)势股,以及研究超短线策略. 限量:单次最大1000,总量不限制 积分:用户积2000 ...

  4. TreeSet源码解析笔记

    定义: TreeSet是一个有序的集合,它的作用是提供有序的Set集合.它继承了AbstractSet抽象类,实现了NavigableSet<E>,Cloneable,Serializab ...

  5. JSONObject.toJSONString(map)

    Map<Integer, List<Integer>> map = new LinkedHashMap<>(); map.put(1,ddzCard.getOneS ...

  6. 使mysql数据库支持简体中文

    永久支持简体中文[root@localhost ~]# vim /etc/my.cnf添加如下四行:[client]default-character-set=utf8 [mysql]default- ...

  7. USACO18DEC Platinum

    standing out from the field 给你n个串,对于每个串求出只包含在这个串中的本质不同的子串? 后缀自动机,建树,对于每一个点打上包含在哪个串中的标记. 叶子都是前缀,直接在sa ...

  8. kNN算法和决策树

    的整数. 下面看书上给出的实例: from numpy import * import operator def createdataset(): group=array([[1.0,1.1],[1. ...

  9. Java类的成员之四:代码块.

    3.2类的成员之四:代码块 ①初始化块(代码块)作用:对Java对象进行初始化 ②程序的执行顺序: ③一个类中初始化块若有修饰符,则只能被static修饰,称为静态代码块(static block ) ...

  10. bzoj1050题解

    [解题思路] 先把边按边权排序,然后O(m)暴力枚举最小边,对于每条最小边,将比其大的边按序加入直到起终点连通,此时最大边权/最小边权即为选择该最小边情况下的最小比值.复杂度O(m(m+n)α(n)) ...