一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量。

于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品,

类似于xor的线性基,这里是实数的线性基。

通过高斯消元不断消除,看消出几行全是零的即可。也就是看这个线性空间基底的维数或者说矩阵的秩。

但是本题还要选的东西花费最少。可以考虑每次消元时,选择一行代表的物品花费最小的行向量来消剩下的(贪心策略)。

如果不选这个,那么之后选出的若干个,如果真的可以表出这个的话,那将最大花费物品换成当前这个,

一定可行(可以列式子证明)且更优。

注意:本题丧心病狂卡精度,试验过后选择$\text{long double} $以及$\text{eps=1e-5}$效果最佳。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define dbg(x) cout << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef long double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+;
const db eps=1e-;//mistake
db A[N][N];
int val[N],ans;
int n,m,tmp; int main(){//freopen("3.in","r",stdin);freopen("3.ans","w",stdout);
read(n),read(m);
for(register int i=;i<=n;++i)for(register int j=;j<=m;++j)read(A[i][j]);
for(register int i=;i<=n;++i)read(val[i]);
val[]=;int i,c;
for(i=,c=;c<=m;++c){
tmp=;
for(register int l=i;l<=n;++l)if(fabs(A[l][c])>eps&&val[tmp]>val[l])tmp=l;
if(!tmp)continue;
if(i^tmp)swap(A[tmp],A[i]),swap(val[tmp],val[i]);
ans+=val[i];
for(register int l=;l<=n;++l)if(i^l)
for(register int j=m;j>=c;--j)
A[l][j]-=A[l][c]/A[i][c]*A[i][j];
++i;
}
printf("%d %d\n",i-,ans);
return ;
}

其实本人也不太会线性代数,题解都是自己yy的,自己也不知道个所以然,比如关于消完之后全零的行向量到底本质是什么意思,为什么矩阵可以随便进行初等变换而不改变秩等等。上次翻了大学的线性代数,看了十几页就看不下去了。。哎太菜了,有空再找数学老师学吧

BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]的更多相关文章

  1. [BZOJ4004][JLOI2015]装备购买(贪心+线性基)

    求最小权极大线性无关组. 先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优. 据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于 ...

  2. 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)

    bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...

  3. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  4. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  5. 【BZOJ4004】装备购买(线性基)

    [BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...

  6. [JLOI2015]装备购买(线性基)

    [JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...

  7. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  8. 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)

    Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...

  9. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

随机推荐

  1. JavaScript基础入门10

    目录 JavaScript 基础入门10 正则表达式 为什么使用正则表达式? 正则表达式的应用场景 如何创建一个正则表达式 基础语法 具有特殊意义的转义字符 量词 字符类 贪婪模式 练习 邮箱验证 中 ...

  2. Docker-Compose运行Nginx+Redis+NetCoreAPI

    Docker-Compose运行Nginx+Redis+NetCoreAPI 一.准备Docker-Compose Docker 开始安装Docker-compose之前你需要先确认已经安装了Dock ...

  3. office web apps安装部署,配置https,负载均衡(七)配置过程中遇到的问题详细解答

    该篇文章,是这个系列文章的最后一篇文章,该篇文章将详细解答owa在安装过程中常见的问题. 如果您没有搭建好office web apps,您可以查看前面的一系列文章,查看具体步骤: office we ...

  4. @Validated和@Valid校验参数、级联属性、List

    @Validated和@Valid的区别 在Controller中校验方法参数时,使用@Valid和@Validated并无特殊差异(若不需要分组校验的话): @Valid:标准JSR-303规范的标 ...

  5. 【VS开发】CTime和CTimeSpan使用

    此文就用一个程序表示,相信只要是学过C语言的都能看得懂的. [html] view plain copy print? // CTimeTest.cpp : Defines the entry poi ...

  6. 【DSP开发】C6000非多核非KeyStone系列DSP中断系统

    C6000系列DSP的中断系统 上一篇介绍了C6455的GPIO系统,最后把GPIO4配置成了中断/事件模式,本文将介绍C6455的中断系统,介绍完基本概念后,给出把GPIO4映射到INT4的代码. ...

  7. Fiddle-常用设置和操作记录

    1.导出证书: 2.清空屏幕: 3.字段认识 4.保存会话: 5.解码

  8. Series与list

    一.索引 1.1 索引顺序 list的索引为从0到n-1.不可更改索引. Series的索引:如果未定义为从0到n-1.如果定义,则为定义的索引,一旦定义完成,索引对象将不可更改.但是索引是可以改变的 ...

  9. ajax怎么打开新窗口具体如何实现

    var newwindow=window.open('about:blank'); jQuery.ajax({ type: 'POST', url: 'clickRate.action', dataT ...

  10. NOIP 2017 逛公园 题解

    题面 这道题是一道不错的计数类DP: 首先我们一定要跑一遍dijkstra来求得每个点到1号点的最短路: 注意题干,题中并没有说所有点都可以到达n好点,只说了存在一条1号点到n号点的路径:所以我们在反 ...