一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量。

于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品,

类似于xor的线性基,这里是实数的线性基。

通过高斯消元不断消除,看消出几行全是零的即可。也就是看这个线性空间基底的维数或者说矩阵的秩。

但是本题还要选的东西花费最少。可以考虑每次消元时,选择一行代表的物品花费最小的行向量来消剩下的(贪心策略)。

如果不选这个,那么之后选出的若干个,如果真的可以表出这个的话,那将最大花费物品换成当前这个,

一定可行(可以列式子证明)且更优。

注意:本题丧心病狂卡精度,试验过后选择$\text{long double} $以及$\text{eps=1e-5}$效果最佳。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define dbg(x) cout << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef long double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+;
const db eps=1e-;//mistake
db A[N][N];
int val[N],ans;
int n,m,tmp; int main(){//freopen("3.in","r",stdin);freopen("3.ans","w",stdout);
read(n),read(m);
for(register int i=;i<=n;++i)for(register int j=;j<=m;++j)read(A[i][j]);
for(register int i=;i<=n;++i)read(val[i]);
val[]=;int i,c;
for(i=,c=;c<=m;++c){
tmp=;
for(register int l=i;l<=n;++l)if(fabs(A[l][c])>eps&&val[tmp]>val[l])tmp=l;
if(!tmp)continue;
if(i^tmp)swap(A[tmp],A[i]),swap(val[tmp],val[i]);
ans+=val[i];
for(register int l=;l<=n;++l)if(i^l)
for(register int j=m;j>=c;--j)
A[l][j]-=A[l][c]/A[i][c]*A[i][j];
++i;
}
printf("%d %d\n",i-,ans);
return ;
}

其实本人也不太会线性代数,题解都是自己yy的,自己也不知道个所以然,比如关于消完之后全零的行向量到底本质是什么意思,为什么矩阵可以随便进行初等变换而不改变秩等等。上次翻了大学的线性代数,看了十几页就看不下去了。。哎太菜了,有空再找数学老师学吧

BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]的更多相关文章

  1. [BZOJ4004][JLOI2015]装备购买(贪心+线性基)

    求最小权极大线性无关组. 先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优. 据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于 ...

  2. 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)

    bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...

  3. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  4. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  5. 【BZOJ4004】装备购买(线性基)

    [BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...

  6. [JLOI2015]装备购买(线性基)

    [JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...

  7. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  8. 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)

    Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...

  9. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

随机推荐

  1. vlc 控件属性和方法

    VLC调研 VLC控件支持的参数和方法 VLC对象列表 Vlc Plugin Object的方法 l        VersionInfo:成员, 返回版本信息的字符串 l        vlc.ve ...

  2. Ubuntu安装deepin wine版QQ

    1.安装deepin wine环境 https://github.com/wszqkzqk/deepin-wine-ubuntu 直接下载zip包(或者用git方式克隆) 使用unzip解压到指定文件 ...

  3. 【VUE】vue在vue-cli3环境下基于axios解决跨域问题

    网上的绝大部分教程解决vue+axios跨域问题都不能直接适用vue-cli3.这是因为vue-cli3不一样的配置方式导致的. 如果是使用vue-cli3构建的项目,那么默认是没有config.js ...

  4. Emgu 学习(4) 使用指针访问图像内存

    在原始图像最初的10行绘制一个颜色条 class Program { static void Main(String[] args) { Mat img = CvInvoke.Imread(@&quo ...

  5. PTA(Basic Level)1042.字符统计

    请编写程序,找出一段给定文字中出现最频繁的那个英文字母. 输入格式: 输入在一行中给出一个长度不超过 1000 的字符串.字符串由 ASCII 码表中任意可见字符及空格组成,至少包含 1 个英文字母, ...

  6. ABC143F Distinct Numbers

    这道题非常好.其思想类似于 $O(n \log n)$ 求最长上升子序列的算法. hint:考虑固定操作次数 $o$,$k$ 最大可取到多少? int n; scan(n); vi a(n); sca ...

  7. AssertionError [ERR_ASSERTION]: Task function must be specified,gulp版本不一致

    报错信息: vue项目打包报错 > innovate-admin-vue@ build /home/soldier/SOLDIER/IDE_project/webStorm_project/in ...

  8. java解析json字符串详解(两种方法)

    一.使用JSONObject来解析JSON数据官方提供的,所以不需要导入第三方jar包:直接上代码,如下 private void parseJSONWithJSONObject(String Jso ...

  9. 一步一步带你入门MySQL中的索引和锁 (转)

    出处: 一步一步带你入门MySQL中的索引和锁 索引 索引常见的几种类型 索引常见的类型有哈希索引,有序数组索引,二叉树索引,跳表等等.本文主要探讨 MySQL 的默认存储引擎 InnoDB 的索引结 ...

  10. Collection接口的子接口——Queue接口

    https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html public interface Queue<E> exten ...