把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

Input

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

Output

对输入的每组数据M和N,用一行输出相应的K。

Sample Input

1
7 3

Sample Output

8

题解+代码:

 1 /*
2 这道题两种做法,一种dfs,一种递推。这里用的递推法(递推法下面代码有注释这里就不说了)
3
4 下面说一下dfs做法,1*x1+2*x2+3*x3+......+m*xm=m意思就是,放1个苹果的盘子有x1个,放2个苹果的盘子有x2个.。。。。。
5 我们只需要枚举x1,x2,x3......xm的取值就行了,因为还有n个盘子的限制,所以dfs过程中传一个参数就行了
6 */
7 #include<stdio.h>
8 #include<string.h>
9 #include<iostream>
10 #include<algorithm>
11 #include<math.h>
12 #include<queue>
13 using namespace std;
14 int digui(int m,int n)
15 {
16 //递归出口就是当苹果没有了或者盘子就剩下了一个
17 if(n==1 || m==0) return 1;
18 if(m<n) return digui(m,m); //必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m)
19 else return digui(m,n-1)+digui(m-n,n); //这一行代码就保证了我们最后求出来的答案不会出现重复
20 //所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n).
21 //而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)
22 }
23 int main()
24 {
25 int t;
26 scanf("%d",&t);
27 while(t--)
28 {
29 int m,n;
30 scanf("%d%d",&m,&n);
31 printf("%d\n",digui(m,n));
32 }
33 return 0;
34 }

放苹果 POJ - 1664 递推的更多相关文章

  1. Number Sequence POJ - 1019 递推 数学

    题意 1 12 123 1234 12345 ....这样的序列 问第n位数字是几   是数字! 1-9! 思路:递推关系 主要是位数的计算   用a[i]=a[i-1]+(int)log10((do ...

  2. POJ 2229 递推

    Farmer John commanded his cows to search for different sets of numbers that sum to a given number. T ...

  3. POJ 1664 放苹果 (递推)

    题目链接:http://poj.org/problem?id=1664 dp[i][j]表示i个盘放j个苹果的方案数,dp[i][j] 可以由 dp[i - 1][j] 和 dp[i][j - i] ...

  4. POJ 1664 放苹果 (递推思想)

    原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n ...

  5. poj 1664 放苹果(递推)

    题目链接:http://poj.org/problem? id=1664 放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  6. 递推(三):POJ中的三道递推例题POJ 1664、POJ 2247和POJ 1338

    [例9]放苹果(POJ 1664) Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. In ...

  7. poj 1664 放苹果 递归

    题目链接: http://poj.org/problem?id=1664 题目描述: 有n个苹果,m个盒子,盒子和苹果都没有顺序,盒子可以为空,问:有多少种放置方式? 解题思路: 当前有n个苹果,m个 ...

  8. poj 1664 放苹果 (划分数)

    题意:中文题目,不解释... 题解: 第一种方法是暴力深搜:枚举盘子1~n放苹果数量的所有情况,不需要剪枝:将每次枚举的情况,即每个盘的苹果数量,以字典序排序,然后存进set里 以此去重像" ...

  9. POJ 1664 放苹果

    放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24985   Accepted: 15908 Description ...

随机推荐

  1. LeetCode701 二叉搜索树中插入结点

    给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树. 返回插入后二叉搜索树的根节点. 保证原始二叉搜索树中不存在新值. 注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜 ...

  2. docker迁入迁出mysql

    docker迁出mysql数据库 测试环境: docker服务器 mysql服务器 IP 192.168.163.19 192.168.163.16 操作系统 CentOS7.8 CentOS7.8 ...

  3. Java虚拟机常用的性能监控工具

    基础故障处理工具 jps: 虚拟机进程状况工具 功能:来处正在运行的虚拟机进程,并显示虚拟机执行主类名称,以及本地虚拟机唯一ID. 它是使用频率最高的命令行工具,因为其他JDK工具大多需要输入他查询到 ...

  4. Selenium WebDriver 8大定位方式

    Selenium WebDriver 8大定位方式: driver.find_element_by_id() driver.find_element_by_name() driver.find_ele ...

  5. Docker学习笔记之进入容器Bash

    我们在创建容器的时候,如果容器的命令(command)不是/bin/bash的时候,使用docker attach命令是会卡住进不去容器的bash shell的.如下图所示: 所以,这里记录一个可以进 ...

  6. 浏览器performance工具介绍及内存问题表现与监控内存的几种方式

    一.GC的目的 为了实现内存空间的良性循环,performance提供多种监控方式监控内存 分析内存相关信息 当代码出现问题的时候及时定位到出现问题的代码块, 提高执行效率. preforcemanc ...

  7. oracle可传输表空间测试

    使用RMAN在恢复表空间的时候,表空间数据文件DBID和恢复数据库的数据文件DBID必须相同 可传输表空间不需要这样,也就是可以快速的把这个表空间插入另一个数据库使用 可传输表空间内的对象必须不依赖与 ...

  8. gRPC Load Balancing

    gRPC Load Balancing 翻译自:https://grpc.io/blog/grpc-load-balancing/ 这是gRPC负载均衡的第一篇,后续会给出基于golang XDS服务 ...

  9. 陈思淼:阿里6个月重写Lazada,再造“淘宝”的技术总结

    小结: 1. 所谓的中台技术,就是从 IDC,网络,机房,操作系统,中间件,数据库,算法平台,数据平台,计算平台,到业务平台,每一层都有清晰的定义和技术产品. 具体来看,首先,集团技术的分层和每层的产 ...

  10. Linux常用命令:文件操作命令

    Linux系统命令主要包括文件操作.网络命令和性能命令,本文介绍常用文件操作命令. 修改文件属性 文件类型: 普通文件:- 目录文件:d 块设备文件:b,硬盘 字符设备: c,串行端口的接口设备,例如 ...