P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)
题意:构造一个$n*m$矩阵 使得每个元素和上下左右的xor值=0
题解:设第一行的每个元素值为未知数 可以依次得到每一行的值
然后把最后一行由题意条件 得到$m$个方程 高斯消元解一下 bitset写起来比较方便
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std;
const int MAXN = 45; int n, m;
bitset<MAXN> a[MAXN][MAXN];
bitset<MAXN> b[MAXN];
int ans[MAXN]; int dx[] = {-1, -1, -1, -2};
int dy[] = {-1, 0, 1, 0}; bool check(int x, int y) {
if(x >= 1 && x <= n && y >= 1 && y <= m) return true;
return false;
} void gauss() {
for(int i = 1, now = 1; i <= m && now <= m; now++) {
for(int j = i; j <= m; j++) {
if(b[j][now]) {
std::swap(b[j], b[i]);
break;
}
}
if(!b[i][now]) ans[now] = 1;
for(int j = i + 1; j <= m; j++) {
if(b[j][now]) {
b[j] ^= b[i];
}
}
i++;
} for(int i = m; i >= 1; i--) {
for(int j = i + 1; j <= m; j++) {
if(b[i][j]) {
ans[i] ^= ans[j];
}
}
}
} int main() {
scanf("%d%d", &n, &m); for(int i = 1; i <= m; i++) a[1][i][i] = 1;
for(int i = 2; i <= n; i++)
for(int j = 1; j <= m; j++) {
for(int k = 0; k < 4; k++) {
int nx = i + dx[k];
int ny = j + dy[k];
if(check(nx, ny)) {
a[i][j] ^= a[nx][ny];
}
}
} for(int i = 1; i <= m; i++) {
b[i] = a[n][i];
if(n - 1 >= 1) b[i] ^= a[n - 1][i];
if(i - 1 >= 1) b[i] ^= a[n][i - 1];
if(i + 1 <= m) b[i] ^= a[n][i + 1];
}
gauss(); for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
int res = 0;
for(int t = 1; t <= m; t++) {
if(a[i][j][t]) res ^= ans[t];
}
if(j != m) printf("%d ", res);
else printf("%d\n", res);
}
}
return 0;
}
P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)的更多相关文章
- BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)
Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...
- BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )
偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...
- P3164 [CQOI2014]和谐矩阵
P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...
- [SDOI2010]外星千足虫 题解 高斯消元+bitset简介
高斯消元 + bitset 简介: 高斯消元其实就是以加减消元为核心求唯一解.这道题还是比较裸的,可以快速判断出来.我们将每一只虫子看作一个未知数,这样根据它给出的 m 组方程我们可以高斯消元得出每一 ...
- bzoj 1923 [Sdoi2010]外星千足虫(高斯消元+bitset)
1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 634 Solved: 397[Submit][Status ...
- BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元+bitset
BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结 ...
- 矩阵&&高斯消元
矩阵运算: \(A\times B\)叫做\(A\)左乘\(B\),或者\(B\)右乘\(A\). 行列式性质: \(1.\)交换矩阵的两行(列),行列式取相反数. \(2.\)某一行元素都\(\ti ...
- POJ 1830 开关问题 【01矩阵 高斯消元】
任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...
- 【Luogu】P3389高斯消元模板(矩阵高斯消元)
题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...
随机推荐
- shelll中test命令的使用【转】
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值.字符和文件三个方面的测试. 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于 ...
- 【Oracle】DRM官方介绍
DRM 简介 By: Allen Gao 首先,我们对和DRM 相关的一些概念进行介绍. Buffer: 对于RAC 数据库,当一个数据块被读入到buffer cache后,我们就称其为buffer ...
- WPF NET5 Prism8.0的升级指南
前言 曾经我以学习的目的写了关于在.NET Core3.1使用Prism的系列文章.NET Core 3 WPF MVVM框架 Prism系列文章索引,也谢谢大家的支持,事实上当初的版本则是Pri ...
- pandas数据分析API常用操作
1.导入数据 df = pd.read_csv( # 该参数为数据在电脑中的路径,可以不填写 filepath_or_buffer='/Users/Weidu/Desktop/sz000002.csv ...
- [工作札记]03: 微软Winform窗体中ListView、DataGridView等控件的Bug,会导致程序编译失败,影响范围:到最新的.net4.7.2都有
工作中,我们发现了微软.net WinForm的一个Bug,会导致窗体设计器自动生成的代码失效,这个Bug从.net4.5到最新的.net4.7.2都存在,一直没有解决.最初是我在教学工作中发现的,后 ...
- SAP中用户口令状态的一点说明
数据元素:XUPWDSTATE 数值 内涵 -2(通常)不能更改口令.-1(每天只允许一次)今天不能更改口令.0可以更改口令,但没有必要更改.1口令为初始值必须更改口令.2口令过期必须更改口 ...
- SpringBoot 好“吃”的启动原理
原创:西狩 编写日期 / 修订日期:2020-12-30 / 2020-12-30 版权声明:本文为博主原创文章,遵循 CC BY-SA-4.0 版权协议,转载请附上原文出处链接和本声明. 不正经的前 ...
- Nginx架构赏析
淘宝的某位大佬曾经做过测试,在一台24G内存的机器上,Nginx的最大并发连接数达到了200万.同学们听到这个结论后,是不是被Nginx的超高性能深深折服了,它内部的架构设计究竟是怎么样的呢?这篇文章 ...
- (04)-Python3之--字典(dict)操作
1.定义 字典的关键字:dict 字典由多个键和其对应的值构成的 键-值 对组成,每个键值对用冒号 : 分割,每个键值对之间用逗号 , 分割,整个字典包括在花括号 {} 中. {key1:value1 ...
- EasyExcel基本使用
EasyExcel基本使用 一.应用场景 1.数据导入:减轻录入工作量 2.数据导出:统计信息归档 3.数据传输:异构系统之间数据传输 二.简介 Java领域解析.生成Excel比较有名的框架有Apa ...